An International Edition

ISBN: 978-93-49938-80-9

ADVANCES IN ENTOMOLOGY

Biodiversity, Ecology and Applications

© Reserved by Editor's

ADVANCES IN ENTOMOLOGY: BIODIVERSITY, ECOLOGY, AND APPLICATIONS

Editor

Dr. Reema Sonker

First Edition: July, 2025

An International Edited Book

ISBN-978-93-49938-80-9

Published by:

Nature Light Publications, Pune

309 West 11, Manjari VSI Road, Manjari Bk.,

Haveli, Pune- 412 307.

Website: www.naturelightpublications.com
Email: naturelightpublications@gmail.com
Contact No: +91 9822489040 / 9922489040

The editors/Associate editors/publisher shall not be responsible for originality and thought expressed in the book chapter/ article. The author shall be solely held responsible for the originality and thoughts expressed in their book chapter or article.

Advances in Entomology: Biodiversity, Ecology, and Applications

Table of Content

Sl.	Title and Authors	Page
No.		No.
1	Artificial Intelligence in Entomology Research: Species Identification, Behaviour, Disease Vector Analysis and Data Processing	01 - 10
	Dr. Akhilesh Saini.	
2	Uncovering Biocontrol Agents: Potential And Challenges Anup Kumar Verma, Dr Reema Sonker, Virendra Kumar Suman, Dr. Abhinav Singh.	11 - 22
3	The Potential of Insects as Food Sources: A Review Ganesh Konda, G. Sadaya Kumar, V. Anil Kumar, N. Mamatha.	23 - 31
4	Molecular Markers in Insect Taxonomy: Tools for Species Identification and Classification (A Brief overview) Sheetal Anand, Deepmala Gupta, Barish James.	32 - 47
5	Integrated Management of Urban Insect Pests: A Commercial and Managerial Perspective Dr Mohammad Asif Chouhan.	48 - 67
6	A Review on Health Benefits and Biological Effects of Honey Ganesh Konda	68 - 75
7	Harnessing Black Soldier Fly Larvae for Sustainable Organic Waste Management Balaji Sundara Mahalingam, Mahendran Selvaraj.	76 - 91
8	Impact of Temperature and Precipitation Shifts on Insect Life Cycles Dr. Vilas Vasant Patil.	92 - 108
9	Chemical Signaling and Defense: Plant-Insect Interactions D.S. Wadavkar, Payal S. Shinde, Dipali A. Karande Pratiksha H. Raut, Manali R. Kale	109-116
10	The function of Insects in Plant Ecology and Ecological system Functioning D.S. Wadavkar, Payal S. Shinde, Dipali A. Karande Gayatri A. Dhere, Sanyuja S. Samindar.	117-124
11	IPM: An Ecofriendly Tool in Effective Pest Management D. S. Kumbhar, L. P. Lanka.	125-130
12	Applications of Remote Sensing, Artificial Intelligence, and the Internet of Things in Entomological Research Agastirishi Bharat Toradmal.	131-135

IPM: An Ecofriendly Tool in Effective Pest Management

¹D. S. Kumbhar

²L. P. Lanka

¹Department of Zoology, Rajarshi Chh. Shahu College, Kolhapur, Maharashtra, India.

²Department of Zoology, Devchand College Arjunnagar, Maharashtra, India.

Email: vidgvi84@gmail.com

Article DOI Link: https://zenodo.org/uploads/17217886

DOI: 10.5281/zenodo.17217886

Abstract

Integrated Pest Management (IPM) offers a practical and eco-friendly strategy for controlling pests, drawing on a mix of straightforward techniques. These programs incorporate the latest, in-depth knowledge about pests' life cycles and their environmental relationships. By blending this data with existing control options, IPM addresses pest-related harm in the most cost-effective way, while minimizing risks to humans, assets, and the ecosystem. Integrated Pest Management (IPM) employs a multifaceted, decision-making process to control pests sustainably, prioritizing prevention and minimal environmental impact. Rather than relying solely on chemicals, IPM integrates several methods in a hierarchical approach, starting with non-chemical options and escalating only as needed. IPM can be achieved through cultural controls, biological controls, mechanical and physical control, chemical control etc. PM's success relies on regular monitoring (e.g., scouting fields for pest levels) and economic thresholds—intervening only when pest populations exceed levels that cause significant damage. This holistic strategy, often supported by technology like remote sensing or apps, reduces reliance on chemicals by up to 50-70% in many applications, making it ideal for agriculture, forestry, and urban settings.

Keywords: Integrated Pest Management, environmental relationships, cultural controls.

Introduction

Integrated Pest Management (IPM) emerged as a response to the environmental and practical shortcomings of early pest control practices, evolving from a niche scientific concept into a global standard for sustainable agriculture. Its roots trace back to the mid-20th century, amid the widespread adoption of synthetic pesticides following World War II.

Early Foundations (Pre-1950s): Pest management has ancient origins, with farmers using natural methods like crop rotation and biological agents (e.g., introducing predatory insects) as far back as ancient China and Rome. However, modern IPM was shaped by the "pesticide era." In the 1940s, the Green Revolution introduced high-yield crops and broad-spectrum insecticides like DDT (developed during WWII). While this boosted food production, they led to unintended consequences: pest resistance, secondary pest outbreaks, pesticide residues in food chains, and ecological damage. By the 1950s, entomologists began questioning the sustainability of chemical-only approaches.

Birth of the IPM Concept (1950s–1960s): The term "integrated control" was first proposed in 1959 by entomologists Vernon M. Stern, Ray F. Smith, Robert van den Bosch, and Kenneth S. Hagen at the University of California, Berkeley. Their seminal paper in Hilgardia outlined a strategy combining chemical and biological controls to manage pests more effectively and with less risk.

Institutionalization and Expansion (1970s–1980s): In the early 1970s, the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Agriculture (USDA) formalized IPM through programs like the Federal Extension Service's IPM initiatives. The 1972 Clean Water Act and Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) amendments emphasized reduced chemical use and integrated strategies. Internationally, the Food and Agriculture Organization (FAO) of the United Nations adopted IPM in 1977, promoting it in developing countries to combat pesticide overuse in rice and cotton farming. Pilot projects in Indonesia (e.g., the 1980s "Farmer Field Schools") demonstrated IPM's success in cutting pesticide use by 50% while increasing yields.

Modern Adoption and Evolution (1990s–Present): The 1990s saw IPM gain traction in the U.S. through the USDA's IPM Roadmap (1993), which aimed for widespread implementation by 2000. Globally, the 1992 Earth Summit in Rio de Janeiro highlighted IPM in sustainable development agendas.

Today, IPM is endorsed by bodies like the World Health Organization (WHO) for urban and public health pest control. Challenges like climate change and pesticide resistance continue to drive innovation, with IPM reducing chemical inputs by 30–70% in many systems and saving billions in costs.

Methods of IPM: Integrated Pest Management (IPM) is a science-based, decision-making framework that combines multiple strategies to manage pests effectively while minimizing environmental, health, and economic risks. The core principle is to prevent pest problems through monitoring and intervention only when necessary, using a hierarchy of methods: starting with the least disruptive (non-chemical) and escalating to targeted chemical use as a last resort.

Below is a detailed breakdown of the primary methods, often used in combination for optimal results.

- 1. Monitoring and Scouting: The foundation of IPM, involving regular observation of fields, crops, or areas to detect pest presence, population levels, and damage early. Tools include visual inspections, traps, pheromone lures, or digital sensors (e.g., drones for large-scale monitoring). IPM Establishes "action thresholds" or economic injury levels—intervening only when pests reach numbers that justify control to avoid economic loss. It Prevents unnecessary treatments, saving costs and reducing pesticide exposure. For example, in cotton farming, weekly scouting can identify bollworm outbreaks before they spread.
- 2. Cultural Controls: Alters agricultural practices or the growing environment to make it unfavourable for pests. Techniques include crop rotation (switching crops to break pest cycles), planting resistant or tolerant varieties, proper irrigation and fertilization to promote healthy plants, sanitation (e.g., removing weeds or debris that harbour pests), and timing planting/harvesting to avoid peak pest seasons. Cultural controls focus on prevention by disrupting pest habitats and life cycles without external inputs. Low-cost and sustainable; e.g., intercropping legumes with cereals can naturally deter soil pests in organic farming is the major benefit of this method.
- 3. Biological Controls: Harnesses natural enemies of pests, such as predators (e.g., birds, spiders, or lady beetles), parasitoids (e.g., wasps that infect caterpillars), and pathogens (e.g., fungi, viruses, or bacteria like Bacillus thuringiensis—Bt—for targeting specific insects). Methods include conservation (protecting existing beneficials by avoiding broad-spectrum pesticides), augmentation (releasing lab-reared organisms), and classical introduction (importing natural enemies from pests' native regions). the principal purpose is to restores ecological balance, suppressing pest populations naturally. This method is environmentally safe with no residues; widely used in greenhouses, where predatory mites control spider mites on tomatoes.
- **4. Mechanical and Physical Controls:** Direct physical interventions to remove, exclude, or kill pests. Examples include hand-weeding or picking pests, using barriers (e.g., nets, mulches, or row covers), traps (e.g., sticky boards, light traps, or mechanical ones like cone traps for rodents), tillage to bury pest eggs, or heat treatments (e.g., solarization of soil to kill weeds and nematodes). This method provides immediate, targeted control without

- chemicals. This method is precise and non-toxic; in urban settings, vacuuming or steam cleaning can manage indoor pests like bed bugs.
- **5. Chemical Controls:** Selective use of pesticides, including synthetic chemicals, biopesticides (derived from natural sources like neem oil or insect growth regulators), or targeted applications (e.g., spot-spraying via precision equipment). IPM emphasizes integrated pest resistance management (IPRM) to rotate chemicals and avoid overuse. It serves as a backup when other methods fail, applied judiciously based on monitoring data. The major benefits include effective for outbreaks but minimized to reduce resistance, pollution, and health risks; e.g., in orchards, systemic insecticides are used only on infested branches.

Limitations of IPM

Integrated Pest Management (IPM) is a highly effective and sustainable approach to pest control, but it has several challenges. Its reliance on prevention, monitoring, and multiple strategies can introduce complexities that make it less straightforward than conventional chemical methods. Below is an overview of the primary limitations, drawn from practical implementations in agriculture, urban settings, and beyond.

- 1. Complexity and Expertise Requirements: IPM demands a deep understanding of pest biology, ecology, and environmental interactions, often requiring training in multiple disciplines (e.g., entomology, agronomy). Farmers or managers without access to extension services or education may struggle to implement it correctly, leading to suboptimal results. For instance, misidentifying pests during scouting can delay effective action.
- 2. Time-Intensive Monitoring and Decision-Making: Regular scouting, data analysis, and threshold-based interventions take significant time and labor. In fast-paced farming operations, this can be impractical, especially for smallholders or during peak seasons. Delays in response might allow minor infestations to escalate, particularly in large-scale fields where full coverage is challenging.
- **3. Higher Initial Costs:** Setting up IPM programs can involve upfront investments in tools (e.g., traps, monitoring tech like drones), biological agents (e.g., releasing beneficial insects), or resistant crop varieties. While long-term savings are common, the initial outlay may deter adoption in resource-limited areas, such as small farms in developing countries.
- **4. Variable Effectiveness and Slower Results:** IPM's non-chemical methods (e.g., biological controls) may not provide the rapid knockdown of severe

outbreaks that synthetic pesticides offer. Effectiveness can fluctuate due to weather, soil conditions, or unpredictable pest behavior—e.g., climate change can disrupt natural enemy populations, reducing biological control reliability.

- 5. Potential for Pest Resistance and Secondary Issues: Even with integrated strategies, pests can develop resistance to any used controls, including biopesticides or cultural practices. Over-reliance on one method (e.g., a single biological agent) might lead to imbalances, such as secondary pest surges if natural enemies are disrupted.
- **6. Scalability and Uniformity Challenges:** IPM works best in diverse, site-specific systems but can be harder to apply uniformly in monoculture or industrial agriculture, where vast areas amplify monitoring difficulties. In urban or public health contexts, coordinating across properties (e.g., for mosquito control) adds logistical hurdles.
- 7. Regulatory and Accessibility Barriers: Availability of approved biological agents, biopesticides, or training varies by region. In some countries, regulatory hurdles slow the introduction of new IPM tools, and supply chain issues (e.g., for imported predators) can limit access. Additionally, IPM's emphasis on reduced chemicals may conflict with short-term yield pressures in export-driven markets.

Summary And Conclusion

In summary, Integrated Pest Management (IPM) represents a paradigm shift in pest control, moving away from reactive, chemical-dependent strategies toward a proactive, holistic approach that integrates monitoring, cultural, biological, mechanical, and judicious chemical methods. By prioritizing prevention, economic thresholds, and ecological balance, IPM not only minimizes pest damage but also safeguards human health, biodiversity, and the environment while delivering long-term economic benefits—often reducing pesticide use by 30–90% and boosting yields through sustainable practices. Despite challenges like implementation complexity and initial costs, its proven track record in agriculture, urban settings, and public health underscores its value as a cornerstone of modern sustainability.

As global pressures from climate change, population growth, and pesticide resistance intensify, IPM's adaptability—enhanced by innovations like precision technology and farmer education—positions it as an essential tool for resilient food systems and ecosystem preservation. Embracing IPM is not just a practical choice but a commitment to a healthier planet for future generations.

References

- 1. Angon, Prodipto Bishnu & Mondal, Sujit & Jahan, Israt & Datta, Mitu & Antu, Uttam Biswas & Ayshi, Famin & Islam, Md. (2023). Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Advances in Agriculture. 2023. 1-19. 10.1155/2023/5546373.
- 2. C.O. Ehi-Eromosele, O.C. Nwinyi and O.O. Ajani (2013). Integrated Pest Management. http://dx.doi.org/10.5772/54476
- 3. https://www.epa.gov/safepestcontrol/integrated-pest-management-ipm-principles