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A B S T R A C T

Recently lots of efforts have been taken to develop superparamagnetic iron oxide nanoparticles (SPIONs) for
biomedical applications. So it is utmost necessary to have in depth knowledge of the toxicity occurred by this
material. This article is designed in such way that it covers all the associated toxicity issues of SPIONs. It mainly
emphasis on toxicity occurred at different levels including cellular alterations in the form of damage to nucleic
acids due to oxidative stress and altered cellular response. In addition focus is been devoted for in vitro and in
vivo toxicity of SPIONs, so that a better therapeutics can be designed. At the end the time dependent nature of
toxicity and its ultimate faith inside the body is being discussed.

1. Introduction

Superparamagnetic iron oxide nanoparticles (SPIONs) have been
found promising candidate in nanobiotechnology for wide range of
applications such as magnetic separation, drug delivery, magnetic re-
sonance imaging (MRI) and magnetic hyperthermia (MH) [1–4]. Most
importantly the site-specific drug and diagnostics agent delivery by
using SPIONs is the most exciting applications in cancer theranostics
[5,6]. The wide ranges of potential bio-applications of SPIONs are in-
fluenced by its physical, chemical, and magnetic properties along with
its shape and size. The toxicity of SPIONs towards normal cells are
hindering its successful implication as therapeutic agent. High degree of
nonspecific binding to cell components and biological fluids by SPIONs
as well as colloidal instability of SPIONs during their delivery into
biological media are the main cause of the toxicity [7]. The response of
these particles to living system both in terms of acute and chronic
toxicity is main concern in terms of clinical activity [8]. Moreover the
degradation and it's accumulation inside the body of this nanoparticles
following administration is very important point of study. Currently the
most trusted and easiest approach to study the In vitro cytotoxicity
studies of nanoparticle is by using different cell lines varying their in-
cubation times and evaluating by colorimetric assays [9,10]. This ap-
proach has gained lots of publicity. However, the main drawbacks of

these studies include a wide range of nanoparticle concentrations and
exposure time [11,12].

In addition, various researchers used different cell lines with
varying culturing conditions which made things more difficult, as direct
comparisons between the available studies and their own results are not
validated. It is to be note that while working on SPIONs, the reported
toxicity taken into consideration includes, inflammation, diminished
mitochondrial activity, the cellular stress mediated generation of re-
active oxygen species (ROS) and chromosome condensation [13–18].

This article is designed in such way that it covers all the associated
toxicity issues of SPIONs. SPIONs are manufactured in higher quantities
in order to meet the demands for rapidly growing field of nanomedicine
for biomedical applications. But exposure to human body and eco-
system needs to address. This review mainly aims to collect the tox-
icological in vitro and in vivo data along with major adverse effects of
SPIONs [19]

2. Why toxicity study of SPIONs?

SPIONs are the most preferred candidate in biomedical applications
for diagnostics and therapeutics. Many in vivo toxicity appliances of
SPIONs are needed in most of biomedical applications. Hence it is im-
portant to study the overall toxicity associated with them. SPIONs are
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very small in size, comparable with the biomolecules. Such a small size
can cause sequestration of these moieties into various body systems and
can interfere with their normal functioning. They might cross blood-
brain barrier and damage neural functions, also can cross nuclear
membrane and cause mutations. The bare SPIONs have very low solu-
bility which can lead to agglomeration which can obstruct blood vessels
[11].

SPION are coated with a suitable biocompatible material for in-
crease in stability, water dispersibility and biocompatibility.

3. In vitro toxicity studies of SPIONs

In order to confirm the toxicity, different assays are available. Each
assay is based on some different principle, for more accurate results it is
recommended to carry multiple assay for same samples. Some of the
widely used assay are lactate dehydrogenases assay (LDH),
Sulphorhodamine B (SRB) assay, protein assay, neutral red, and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

3.1. In vitro assays for cytotoxicity studies of SPIONs

MTT assay is a widely accepted, non-radioactive, colorimetric based
assay [20,21]. MTT is derivative of a tetrazolium salt, which is con-
verted into purple formazan insoluble complex by enzyme within the
mitochondrial dehydrogenases [22]. Recent reports suggest that that
reduction of MTT can also be facilitated by NADH or NADPH within the
cells and also outside of mitochondria [22]. Therefore further mod-
ification of the initial protocol by Mossmann was proposed [23,24] in
order to increase the repeatability and the sensitivity of the assay. Only
active mitochondria contain these enzymes; therefore, the reaction only
occurs in living cells [25].

The neutral red uptake assay is based on the ability of viable cells to
incorporate and bind the supra vital dye neutral red. This assay is
widely used cytotoxicity assay used for biomedical and environmental
applications. The principle behind this is the weak cationic dye pene-
trates cell membranes by the mechanism of nonionic passive diffusion
and concentrates in the lysosomes.

The dye binds to lysosomal matrix by electrostatic interaction,
which is then extracted from the viable cells by using an acidified
ethanol solution, and the absorbance of the solubilized dye is quantified
using a spectrophotometer [26].

Another important assay commonly used is, LDH leakage assay
which is based on the measurement of lactate dehydrogenase activity in
the extracellular medium. The silent features like reliability, speed, and
simple evaluation are the major strengths of this assay [27].

The most widely used assay for viability study is the trypan blue.
The assay is simple method of determining cellular viability [28]. In
this the cells are sedimented onto slides and fixed in a mixture of trypan
blue and paraformaldehyde. The nonviable cells a stain with dark blue
color, whereas viable cells exclude the dye [29]. The major concern
with trypan blue assay is its difficulty to interpret because of staining
artefacts.

A number of techniques for detecting DNA damage (e.g. micro-
nuclei, mutations, structural chromosomal aberrations) have been used
to identify substances with genotoxic activity. The comet assay, also
known as single-cell gel electrophoresis (SCGE), is so named because
damaged cells form a comet-shaped pattern after electrophoresis. It is a
sensitive method to measure genotoxicity and cytotoxicity of chemical
and physical agents. The comet assay has also been used to analyse the
capacity of cellular DNA repair [30].

Continues metabolic process produces reactive oxygen species
(ROS) such as superoxide and hydrogen peroxide. ROS generation is
normally counterbalanced by the action of antioxidant enzymes and
other redox molecules. However, higher levels of ROS can lead to cel-
lular injury and may damage biomolecules such as DNA, lipids and
proteins [31]. This excess reactive oxygen species should be eliminated

from the cell. The cellular antioxidant enzymes and other redox mole-
cules take care of excessive ROS and counterbalance ROS generated in
the cell [32].

3.2. Mechanism associated with in vitro toxicity of SPIONs

The most beautiful features of SPIONs is they can be easily attracted
and manipulated by using external magnetic field and in addition the
superparamagnetic properties, enables them to work as magnetic
switches. In addition the least toxic effect shown on human body has
attracted researcher to explore this system for maximum biomedical
applications [33,34].

Fig. 1 represents the possible mechanism of SPIONs interaction with
cell and toxicity at cellular level. The figure suggests that SPION can
interact with cell by different mechanisms. The prominent one are, a)
passive diffusion b) Receptor mediated endocytosis c) clatharin medi-
ated endocytosis d) and caveoline mediated endocytosis. After entering
inside the cell SPION are degraded by enzymes present in lysosomes
and breaks the assembly to form ions. This Fe + 2 ions generates re-
active oxygen species (ROS) by altering mitochondrial and other or-
ganelle functions and induction of cell signalling pathways which leads
to activation of inflammatory tells [35,36]. Possible mechanism of
SPIONs interaction and SPIONs-induced toxicity at cellular level is
shown in Fig. 1.

3.2.1. SPION associated plasma membrane toxicity
The SPION also shows toxicity by damaging the plasma membrane

and proteins. In addition to induction of cell signalling pathways,
SPION can stimulates the redox reactions and up regulate plasma
membrane proteins which results in the generation of cellular stress and
ultimately cell death [37,38].

It is observed that the toxicity assay based upon mitochondrial
functionality (e.g., MTT and XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfo-
phenyl)-2H-tetrazolium-5-carboxanilide)), which are based upon re-
ductase enzyme may show large errors [39]. The reason behind this is
the redox active surface of SPIONs could widely impact electron flow
and change the mitochondrial functionality [40–42]. The study done by
Jeng and Swanson [16] showed that SPIONs had a major effect upon
mitochondrial function and maximum concentration tested was
([Fe] ≈ 2.5 mM) at this concentration there was statistically significant
change in the mitochondrial function. In another study done by Au
et al. [40] similar results were observed and the authors have con-
cluded that SPION alters mitochondrial function as well as decreased
cell viability.

The study lead by the Stroh et al. [14] confirmed that citrate-coated
SPIONs results in a substantial increase in protein oxidation and oxi-
dative stress [14]. The study also concluded that iron was the source to

Fig. 1. Schematic representation of possible mechanism of SPIONs interaction and
SPIONs-induced toxicity at cellular level.
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generate the reactive oxygen species (ROS). This was supported by a
dramatic reduction in these levels of ROS via co-administration of an
iron chelator.

Van den Bos et al. [43] also reported a study in which he used
dextran coated SPIONs in dose-dependent manner. It was observed that
there was increase in lipid peroxidation with simultaneous increase in
dose [43]. The key factor for generation of ROS was ferritin which was
reported in rat synaptosomes and which lead to neurodegeneration in
vivo [44].

It is also observed that surface coating has particular effect at the
same time the length of a coating can play a significant role and it is
seen that it bear a negative correlation with toxicity [17]. At the same
time longer tails coated SPION may undergo degradation into shorter
tails within the intracellular environment and cause toxicity.

The SPIONs being in nanometre size can easily enter into the nu-
clear membrane and may cause damage to DNA and which may results
in generation of ROS. In addition the released ROS further causes da-
mage to nucleic acid and at high concentration may lead to breaking of
hydrogen bonding in DNA structure.

Damage or injury to cytoskeletal structure is very important area of
research. The toxicity created by SPION needs to confirm, as these fi-
laments are essential element in maintaining cellular and structural
morphology. The study suggests that high doses of SPION lead to in-
terference with the actin cytoskeleton resulting in decreased cell pro-
liferation [45]. The study done by Soenen et al. clearly shown that
SPION encapsulated in liposomes also called magntoliposomes shown
direct effect on actin cytoskeleton architecture and which leads to
formation of focal adhesion complexes and cell has shown decreased
proliferation ability. The study also reveals that the effect was reversal
and took 7 days to return to normal [45]. Disruption of a cytoskeleton
protein, tubulin, and dynamic cortical meshwork of F-actin are some
other reported effects of SPION [46–48]. Resovit is commercially
available MRI agent formulated with carboxy dextran coated SPION.
When pancreatic islet cells labelled with Resovist, there was increasing
expression in insulin levels [49]. In another study of Resovist on me-
senchymal stem cells showed amplified cellular growth and cell cycle
progression. This was accompanied by alterations in the expression of
cell cycle regulatory proteins [50].

Primary human fibroblasts (hTERT-BJ1) cell line shown increase in
cell proliferation in response to transferrin-coated SPIONs [46].

Recent invitro studies have shown the effect of SPION on macro-
phages. The study revealed that there was change in cellular behaviours
with cytokine expression. In addition there was increased expression of
IL-1, 4, and 10, TNF- α and inhibition of tumor necrosis factor-α (TNF-
α) which suggest the potential effect on immuno modulatory cap-
abilities [51–53].

Our group has also studied rigorously on in vitro cytotoxicity as-
sociated with different ferrite and other MNPs such as Fe3O4, CoFe2O4,
Ni-ZnFe2O4, ZnFe2O4 nanoparticles with different coating materials
using MTT and trypan blue assays on different cell lines, both cancerous
and normal cell lines [54–57].

Table 1: A brief account of in vitro toxicity of SPIONs (bare as well
as coated) on different cell types using different cytotoxic assays is
discussed in detail.

4. In vivo toxicity studies of SPIONs

4.1. Mechanism associated with in vivo toxicity of SPIONs

The SPIONs are aggregated in a particular tissue by using a magnet
for maximum effects for therapy or diagnosis application, which can
leads to high concentrations in that area [105]. Now this may lead to
high levels of free Fe ions in the exposed tissue which may lead to
cellular damage which can lead to or have a significant impact on fu-
ture generations if the fidelity of the genome in germ cells is not
maintained [106–108]. It also to be note that iron has been associatedTa
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with cancer different researchers has explained various mechanisms for
these effects [109,110].

The physical and chemical characteristics of SPIONs are considered
as crucial factors to determine pharmacokinetics, toxicity and bio dis-
tribution of magnetic nanoparticles [57]. Till date very few studies are
available on humans which can discuss the detail property of SPION.
One such study is done on Ferumoxtran-10, which is a dextran-coated
USPIO (ultra-small SPIONs). It has seen that this NPs have shown to
induce the transient effects including urticaria, diarrhoea and nausea
[111,112]. The same system when it was exposed as commercial con-
trast agent in living system, adverse events from USPIO were reversible
and diminish with the time [113].

Chertok et al. [114] checked the possibility of SPIONs as a drug
delivery vehicle for magnetic targeting of brain tumors. Animals were
intravenously injected with nanoparticles (12 mg Fe/kg), no observable
toxicity was found. Pradhan et al. [115] found no significant changes in
haematological and biochemical parameters and suggested that the
high dose had raised the Serum glutamic pyruvic transaminase (SGPT)
levels suggesting the hepatic toxicity while the detail histopathological
images suggested that there was no morphological changes was noted.

The study done by Lübbe et al. [116] developed a stable nanome-
dicine of magnetic nature and to which different molecules of drugs,
cytokines and other molecules are chemically attached and directed
inside the cells through magnetic field. Various concentrations of the
magnetic fluid were tested in rats and immunosuppressed nude mice.
As a result, the Ferro-fluid did not cause major laboratory abnormal-
ities. Hu et al. [117] coupled PEG-coated Fe3O4 nanocrystals with a
cancer-targeting antibody, rch 24 mAb as a MRI contrasting agent.
After completion of successful invitro cell line study the assembly was
used for in vivo experiments for identification of human colon carci-
noma After the experiment the nude mice recover anaesthesia and lived
normally for weeks, which demonstrates that the bioconjugates have no
acute fatal toxicity.

4.2. Genotoxicity

It has been seen that the any type of cellular stress has shown to
have expression of different signalling factor. Similarly, the SPIONs
exposure uplifts the expression of genes which are involved in cell
signalling and shows the impact on signalling transduction pathways.
The, uplifted genes includes; tyrosine kinases, integrin subunits mem-
bers of the protein kinase C family, Ras-related protein, extracellular
matrix proteins (ECM proteins) and matrix metalloproteinases [46]. It
is also reported that in vivo administration of dietary iron in rats had
increased number of DNA breaks [118]. Polyaspartic acid-coated
magnetite NPs in vivo study demonstrated a time and dose-dependent
increase in micronucleus frequency [16].

Fig. 1 explain the possible mechanism of ROS after exposure of
SPIONs following internalization via a number of possible mechanisms
is shown in Fig. 1, [119,120].

4.3. Immunotoxicity

Immunotoxicity is the study of toxicity effect of NPs on immune
cells [47]. Till date very limited data is available which can suggest the
interaction between immune system and SPION [121]. The study done
by Shen et al. [122] shown that administration of iron oxide nano-
particles, in a dose-dependent manner significantly weakened in-
flammatory reactions and delayed the expression of interferon-γ, in-
terleukin-6 and tumor necrosis factor-α at the inflammatory site [123].

4.4. Cellular stress

Cellular stress due to SPION is important factor for expression stress
molecules. Gao et al. [124] reported that SPIONs lowers p53 expres-
sion. He also studies the effects of SPIONs on cell cycle regulatory

proteins [124]. Spindle cell sarcoma and pleomorphic sarcoma in rats
was reported after I/M exposure of iron-dextran complex [125]. Ex-
pression of hepcidin was observed in iron-overload in vivo [126–128].

5. Fate of SPIONs

In the literature, most of work was carried out to study the toxic
effects of SPIONs but a very less data was available on the final desti-
nation of SPIONs after exposure in vitro or after administration in vivo.
It is a prime importance to study the clearance or use of SPIONs after
exposure to body for a particular therapy application such as in drug
delivery, MRI and hyperthermia.

5.1. Fate of SPIONs in vitro

In vitro studies suggested that SPIONs are avidly taken up by fi-
broblasts, macrophages and tumor cells. The surface property of the
SPION has greater impression on the uptake inside the cell. For ex-
ample, the system of carboxydextran-coated SPIONs of size ranging less
than dextran-coated SPIONs had shown the higher percentage inter-
nalization inside the macrophage cell, but this uptake is not associated
with cell activation as no interleukine-1 release is observed [129].
Muller et al. [130] hypothesized that the cell toxicity was only con-
ferred after internalization into the cells [130]. Furthermore, Muller
et al. confirmed particle internalization into the granulocytes by la-
beling the particles with luminal, a chemiluminescent dye, which nicely
correlate with intracellular iron uptake [85].

5.2. Fate of SPIONs in vivo

SPION once administered, the fate inside the body is dependent on
various parameters which include size, shape, and most important
coating done on the surface of the particle. One study has reported that
initially the SPION once administered, enters into liver and spleen
[131,132]. The system developed of oleic acid/pluronic-coated SPIONs
had shown that more than half of the drug were accumulated inside the
liver of rats [133,134]. Similarly one study has reported that following
internalization of dextran coated SPIONs, the particles are accumulated
in lysosomes. The iron oxide is broken into iron ions via change in pH
and ultimately gets incorporated into haemoglobin. The dextranase
further helps to break the dextran coating and facilitate the degradation
[129]. The important question here arise that this degree of degrada-
tion is highly dependent upon the protein corona present on the surface
of SPION.

6. Conclusions

This review discusses the properties of SPIONs that may contribute
to their toxicity as well as some methods of assessing this toxicity in
vitro. The importance of in vitro toxicity testing has increased in recent
times, mainly due to its desirable qualities over in vivo testing.
Specifically, in vitro tests are easier to manipulate, more cost effective
and easier to interpret.

Toxicity of SPIONs is proved to be concentration dependent and it
also depends on exposure time. No observable toxicity is seen at lower
levels of SPIONs as these particles can be cleared from body. While in
the case of high dose exposure, the particles may trigger cellular stress
and altered response. Hence some more studies in this direction are
needed. In addition it is noted that the functionalization of SPION with
biological moiety has shown least toxic effects, but it is critical to design
functionalized SPIONs which are able to meet sufficient internalization
property and are appropriately magnetizable, and also meet the de-
mands of a particular application without compromising on cellular
toxicity. The criteria to define toxicity of SPIONs needs to be redefined,
particularly as studies on SPIONs have begun to highlight aberrant
cellular responses including DNA damage, oxidative stress,

R.M. Patil et al. Biochemistry and Biophysics Reports 13 (2018) 63–72

68



mitochondrial membrane dysfunction and changes in gene expression
all in the absence of cytotoxicity. Hence terms such as biocompatibility
need to be revaluated when commenting on the safety of these SPIONs.
This will ensure the safer use of SPIONs in nanomedicine and will help
to establish novel targeted therapies with improved design that are able
to deliver their beneficial promises to the medical field.
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