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Abstract
A green and eco-friendly synthetic protocol has been established for the preparation 
of a series of isoxazole derivatives using Theophylline Hydrogen Sulfate (THS) as 
a highly efficient and reusable solid acid catalyst. In this method, aldehydes react 
smoothly with ethyl acetoacetate and hydroxylamine hydrochloride in aqueous 
medium under ambient conditions with continuous stirring. The use of water 
as a solvent, along with THS, not only promotes the reaction efficiently but also 
eliminates the need for hazardous organic solvents or harsh conditions. The protocol 
provides multiple advantages such as short reaction times, high to excellent product 
yields, operational simplicity, and easy catalyst recovery and reuse. Owing to its 
environmentally benign nature, low cost, and sustainability, this method represents 
a practical approach for the green synthesis of isoxazole derivatives and can be a 
promising alternative for large-scale and industrial applications.
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1  Introduction
The fields of chemical industries and processes have seen tremendous improvements 
in recent decades. These industries, however, have had a negative impact on human 
health, the environment, and animals. As a result, there is an increasing trend in chemi-
cal research to eliminate or reduce hazardous chemical processes. Because of this, green 
chemistry has become more and more well-known among chemists. Green chemistry 
is a collection of 12 principles that, when followed, result in ecologically beneficial and 
healthy processes and reactions. This method eliminates the hazards connected with 
harmful compounds while also lowering energy usage and increasing efficiency [1–3].

Multi-component reactions (MCRs) provide a highly efficient way of creating desired 
chemicals in a remarkably short duration [4–6]. They have various advantages, includ-
ing shorter reaction times, higher yields, lower costs, and less waste generation. Notably, 
nearly all of the reactants in MCRs are actively involved in product creation, removing 
the need to segregate intermediates. This is consistent with green substituted chemistry 
principles, reduces energy usage, and maximizes efficiency [7–9].

Nitrogen-containing heterocyclic compounds are basic building blocks of many syn-
thetic and natural biologically active substances [10–12]. A recent investigation found 
that at least one heterocyclic component containing nitrogen is present in over 60% of 
small-molecule medications authorized by the US Food and Drug Administration. Isox-
azoles possess a broad range of biological activity and distinctive physicochemical char-
acteristics, making them valuable in medicine, agriculture, and technology, as well as in 
organic synthesis [13]. Their stability as aromatic heterocycles, primarily due to a weak 
oxygen-nitrogen bond, allows for modification without opening the five-membered 
heterocyclic ring. While maintaining their cyclic structure, isoxazoles can sometimes 
be transformed into functionalized acyclic compounds, further enhancing their versa-
tility in various applications. Some natural sources like Amanita muscaria and legume 
seeds also contain the isoxazole ring [14]. Isoxazole and its derivatives are a notewor-
thy class of compounds because they have a heterocyclic structure that includes both 
nitrogen and oxygen. Synthesis of Isoxazole derivatives using methods such as cycload-
dition, cyclomerization, condensation, and functionalization. Numerous fields, includ-
ing organic synthesis, medicinal chemistry, the pharmaceutical industry, optoelectronic 
device development, and light-conversion molecular systems, find wide uses for them 
[15] and some finding application in agrochemical compounds. To illustrate, the isox-
azole structure is present in merocyanine dyes used in optical recording, nonlinear 
optical research, and certain liquid crystalline materials [16–18] Additionally, isoxa-
zole compounds possess diverse biological properties, including anti-obesity [19], anti-
inflammatory [20], Antifungal [21], anticancer [22], antitumor [23], antibacterial [24], 
anticonvulsant [25], and anti-HIV [26] activities (Fig. 1).

Breast cancer ranks as the second leading cause of death among women. While sev-
eral FDA-approved drugs exist for its treatment, they often encounter challenges such 
as drug resistance, toxicity, and selectivity issues. Additionally, alternative therapies like 
hormonal therapy, surgery, radiotherapy, and immune therapy, although utilized, often 
come with side effects including bioavailability concerns, lack of selectivity, and phar-
macokinetic-pharmacodynamic complications. Consequently, there’s a pressing demand 
for the development of new compounds that are both non-toxic and more efficient in 
cancer treatment. In recent years, isoxazole derivatives have garnered attention due 



Page 3 of 15Dhane et al. Discover Chemistry           (2025) 2:345 

to their promising anticancer properties with minimal side effects. These derivatives 
exhibit anticancer activity through various mechanisms, including apoptosis induction, 
aromatase inhibition, disruption of tubulin assembly, topoisomerase inhibition, HDAC 
inhibition, and ERa inhibition [27].

The arrangement of oxygen and nitrogen atoms in the isoxazole moiety, with a low 
bond dissociation energy, renders it weakly basic and susceptible to breaking, particu-
larly under conditions like photolysis or thermolysis due to the fragility of the nitro-
gen-oxygen bond. Chemically, the isoxazole moiety can undergo electrophilic aromatic 
substitution at the 4-position and nucleophilic aromatic substitution at the 3 and 5 
positions of the isoxazole ring. Additionally, deprotonation of the isoxazole moiety 
may initiate ring-opening reactions, leading to further substitution, which can enhance 
therapeutic activity. Isoxazole derivatives, forming a distinctive and unified class of com-
pounds, showcase antibiotic, antiproliferative, and antiviral properties, and also serve as 
modulators of nicotinic receptors. Using 3,5-diarylsubstituted isoxazoles to create novel 
drug-like compounds and assessing their biological effects against various cancer cell 
lines, as well as an immortalized normal prostate epithelial cell [28].

Several catalysts were employed to synthesize Isoxazole molecule such as Ag, Ce@
SNC/A1SCA [29], Triphenylphosphine [30], Natural deep eutectic solvents (NaDESs) 
[31], Eucalyptol [32], Natural sunlight [33], GO@Fe(ClO4)3 [34], WEOFPA/glycerol [35], 
Lipase [36], Citrazinic acid [37], Vitamin B1 [38], Nano-MgO [39], Boric acid [40], Imid-
azole [41], Fe3O4@C-SO3H [42], Phthalimide-N-oxyl salts [43], Cu/TCH-pr@SBA-15 
[44], Ag/SiO2 [45], Sodium malonate [46]. Although the mentioned protocols have pro-
duced positive results in many cases, they have a number of drawbacks. These include 
the use of costly catalysts or reagents, lengthy reaction periods, complex workup pro-
cesses, severe reaction conditions, the reliance on metal catalysts, the requirement for 
large amounts of catalyst or specialized equipment, and the use of poisonous organic 

Fig. 1  Biological scaffolds of Isoxazole-5(4 H)-ones
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solvents. Therefore, a highly effective, eco-friendly, simplified, applicable, and high-
yielding method for synthesizing different isoxazole-5(4H)-ones scaffolds needs to be 
investigated.

As a result, the use of solid acid catalysts is a feasible alternative to traditional and 
severe liquid acids such as nitric acid, hydrochloric acid, and sulfuric acid, which can-
not be used in stoichiometric amounts [47]. The ease of separating the catalyst from the 
product is a vital consideration for chemists, and solid acid catalysts facilitate this sepa-
ration, making them much applicable in diverse reactions. Notable benefits of solid acid 
catalysts include low toxicity, readily available precursors, high stability and good selec-
tivity, use in low-energy synthesis processes for a variety of organic transformations, and 
economic and commercial viability [48]. Isoxazole derivatives exhibit a broad range of 
therapeutic effects, including anti-cancer, antiviral, antimicrobial, and anti-inflamma-
tory properties. Within the isoxazole structure, oxygen and nitrogen atoms are arranged 
in a 1:2 ratio, with relatively low bond dissociation energies: nitrogen-nitrogen (N-N) 
bond energy is 945.4 kJ/mol 1, nitrogen-oxygen (N-O) bond energy is 630.7 kJ/mol 1, and 
carbon-oxygen (C-O) bond energy is 1076.4 kJ/mol 1 [49].

Theophylline Hydrogen Sulfate (THS) is a solid acid catalyst derived from the naturally 
occurring xanthine alkaloid, theophylline. It is highly efficient, reusable, and environ-
mentally friendly, making it an attractive catalyst for green organic synthesis. THS pro-
motes various organic transformations under mild reaction conditions, often in aqueous 
media, minimizing the need for toxic solvents. Its solid nature facilitates easy recovery 
and reuse, contributing to sustainable chemistry practices. These properties, along with 
its high catalytic activity, make THS an ideal choice for the synthesis of heterocyclic 
compounds, including isoxazole derivatives.

We have introduced a successful and appropriate procedure for producing Isoxazole-
5(4H)-ones derivatives by considering the previously mentioned details on synthetic 
techniques and catalysts, and our purpose to creating environmentally friendly synthetic 
approaches,. This involves the reaction of different aldehydes, ethyl aceto-acetate and 
hydroxyl amine hydrochloride using THS as a sustainable solid acid catalyst. (Fig. 2)

Fig. 2  Theophylline Hydrogen Sulphate (THS) catalyst’s structure
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2  Experimental
2.1   General

The chemical firms Loba and Sigma-Aldrich provided all of the compounds, which were 
utilised without further purification. Water that had been double-distilled was used as 
the aqueous medium. Using melting/boiling point equipment (Eq. 730 A-EQUIPTRON-
ICS), melting points were determined to be incorrect. The 1H and 13C NMR spectra 
were obtained at 400 and 100 MHz, respectively, using a Bruker or JEOL spectrometer. 
Electrospray ionization (ESI) was used using a Waters Synapt G2 to record high-resolu-
tion mass spectra.

2.2  General procedure for the synthesis of THS

A mixture of 50 ml of chloroform and 10 mmol of theophylline was stirred at R.T. for 
fifteen minutes in a clean, and dry round-bottom flask. The mixture was then gradually 
mixed with 10 mmol of sulfuric acid. For two more hours, the reaction stirred continu-
ously. After filtering, the resultant precipitate underwent several acetone leaching proce-
dures to eliminate any remaining sulfuric acid [50, 51]. Ultimately, the white powder that 
was produced was dried for two hours in an oven. The spectrum data for the synthesized 
catalyst are included in the supplemental section.

2.3  General procedure for the synthesis of Isoxazole-5(4 H)-ones

A mixture containing aldehyde (1 mmol), ethyl aceto-acetate (1 mmol), hydroxyl amine 
hydrochloride (1 mmol), and 10  mol% THS in 5  ml double-distilled water was sub-
jected to stirring using a magnetic stirrer at R.T. Within 25 min, the crude product was 
obtained. The progress of the reaction was monitored by Thin Layer Chromatography 
(TLC) in n-hexane: ethyl acetate (7:3). The solid product was isolated through simple 
filtration with water washings. The separated solid product underwent recrystallization 
using ethanol and was subsequently characterized through Nuclear Magnetic Resonance 
(NMR), and High-Resolution Mass Spectrometry (HRMS).

2.4  Spectral data of THS catalyst

THS: White Solid, 1H NMR (400  MHz, CDCl3) ẟ: 3.46 (s, 3  H), 3.65 (s, 3  H), 7.52 (s, 
1H), 7.78 (broad, 3 H). 13C NMR (100 MHz, CDCl3, ẟ ppm): 28.60, 30.14, 105.76, 139.69, 
149.32, 152.83, 153.68.

2.5  Spectroscopic data for some target compounds are as follows

1.	  3-methyl-4-(4-methoxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 12)
	 Yellow Solid, m.p. 176 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.28 (s, 3 H), 3.92 (s, 3 H), 

7.00-7.02 (d, 2 H), 7.34 (s, 1H), 8.43–8.45 (d, 2 H); 13C NMR (100 MHz, CDCl3) ẟ: 
11.67, 55.73, 114.67, 116.37, 125.84, 136.98, 149.35, 161.30, 164.63, 168.79; HRMS: 
218.0817 (M + 1).

2.	 3-methyl-4-(4-(dimethylaminobenzylidene)isoxazol-5(4H)-one (Table 1, entry 3)
	 Red Solid, m.p. 206  °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.24 (s, 3 H), 3.16 (s, 6 H), 

6.70–6.73 (d, 2 H), 7.21 (s, 1H), 8.39–8.41 (d, 2 H); 13C NMR (100 MHz, CDCl3) ẟ: 
11.73, 40.12, 111.25, 111.53, 121.55, 137.62, 149.24, 154.25, 161.57, 170.12; HRMS: 
231.1133 (M + 1).
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3.	  3-methyl-4-(4-nitrobenzylidene)isoxazol-5(4H)-one (Table 1, entry 2)
	 Yellow Solid, m.p. 142 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.36 (s, 3 H), 7.48–7.51 (d, 

4 H), 10.17 (s, 1H); 13C NMR (100 MHz, CDCl3) ẟ: 123.71, 124.08, 124.35, 127.68, 
130.53, 131.63, 133.99, 138.19, 148.37.

4.	  3-methyl-4-(3,4,5-trimethoxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 6) 
	 Yellow solid, m.p. 128 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.30 (s, 3 H), 3.96 (s, 6 H), 

4.00 (s, 3 H), 6.82 (s, 1H), 7.27 (s, 2 H); 13C NMR (100 MHz, CDCl3) ẟ: 11.69, 56.42, 
61.22, 1.4.09, 111.80, 118.00, 127.73, 143.87, 149.82, 152.92, 153.50, 161.19, 168.58.

5.	  3-methyl-4-(4-chlorobenzylidene)isoxazol-5(4H)-one (Table 1, entry 5)
	 Bright yellow solid, m.p. 134 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.498 (s, 3 H), 6.915–

6.921 (d, 2 H), 7.548 (s, 1H), 8.199–8.202 (d, 2 H); 13C NMR (100 MHz, CDCl3) ẟ: 
11.76, 115.98, 116.87, 119.66, 120.01, 125.23, 132.46, 137.38, 145.60, 160.12, 163.01.

6.	  3-methyl-4-(2-hydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 7)
	 Light yellow, m.p. 196 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.216 (s, 3 H), 6.901–6.913 

(m, 2 H), 7.541–7.563 (m, 1H), 7.991 (s, 1H), 8.734–8.749 (d, 1H), 9.983 (s, 1H); 13C 
NMR (100  MHz, CDCl3) ẟ: 11.72, 116.73, 116.98, 119.63, 119.99, 133.78, 138.20, 
144.53, 160.21, 163.53, 168.51.

7.	 3-methyl-4-benzylideneisoxazol-5(4H)-one (Table 1, entry 1) 
	 Yellow Solid, m.p. 196 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.25 (s, 3 H), 7.52–7.55 (t, 

2 H), 7.60–7.64 (t, 1H), 7.98 (s, 1H), 8.34–8.39 (d, 2 H); 13C NMR (100 MHz, CDCl3) 
ẟ: 11.70, 118.30, 128.98, 132.98, 133.95, 134.25, 151.99, 152.53, 168.21.

8.	 3-methyl-4-(4-fluorobenzylidene)isoxazol-5(4H)-one (Table 1, entry 4) 
	 Pale yallow Solid, m.p. 137 °C, 1H NMR (400 MHz, CDCl3) ẟ: 3.09 (s, 3 H), 7.64 (d, 

2 H), 7.92 (s, 1H), 8.41 (d, 2 H); 13C NMR (100 MHz, CDCl3) ẟ: 11, 128,134, 133, 164.6, 
168.3.

9.	  3-methyl-4-(2-nitrobenzylidene)isoxazol-5(4H)-one (Table 1, entry 8)
	 Yellow Solid, m.p. 137 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.209 (s, 3 H), 6.899–6.904 

(m, 2 H), 7.540–7.561 (m, 1H), 7.956 (s, 1H), 8.726–8.732 (d, 1H); 13C NMR (100 MHz, 
CDCl3) ẟ: 11.68, 116.70, 116.90, 119.59, 119.98, 133.68, 138.25, 144.56, 160.25, 163.65, 
168.58.

10.	 3-methyl-4-(3-methoxy, 4-hydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 9) 
	 Orange Solid, m.p. 212 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.231 (s, 3 H), 3.836 (s, 3 H), 

6.951 (s, 1H), 7.565–7.861 (m, 2 H), 8.499 (s, 1H), 10.432 (s, 1H); 13C NMR (100 MHz, 
CDCl3) ẟ: 11.69, 55.99, 114.15, 116.30, 117.15, 125.59, 132.48, 147.68, 152.25, 154.26, 
162.75, 169.45.

11.	 3-methyl-4-(3, 4-dihydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 10) 
	 Yellow solid, m.p. 210 °C, 1H NMR (400 MHz, CDCl3) ẟ: 2.41 (s, 3 H), 6.85 (d, 1H), 

7.46 (d, 1H), 7.66 (s, 1H), 7.70 (s, 1H), 8.16 (s, 1H), 8.70 (s, 1H); 13C NMR (100 MHz, 
CDCl3) ẟ: 14.6, 114.8, 115.8, 126.4, 127.3, 128.7, 136.9, 145.8, 146.3, 158.2, 168.7.

12.	 3-methyl-4-(2-hydroxynaphthalene-1-ylbenzylidene)isoxazol-5(4H)-one (Table  1, 
entry 11) 

	 Yellow solid, m.p. 196  °C, 1H NMR (400  MHz, CDCl3) ẟ: 2.40 (s, 3  H), 7.54–7.67 
(m, 3 H), 8.05 (d, 1H), 8.17 (d, 1H), 8.27 (d, 1H), 8.44 (d, 1H), 8.66 (s, 1H); 13C NMR 
(100 MHz, CDCl3) ẟ: 11.5, 121.4, 124.8, 124.40, 126.8, 127.9, 128.15, 130.80, 131.44, 
132.89, 149.1, 159.8, 161.8, 167.9, 169.1.
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3  Result and discussion
THS is a solid acid catalyst exhibiting high solubility in water and insolubility in organic 
solvents, reflecting its ionic nature [50]. Its aqueous solubility makes it particularly suit-
able for the synthesis of Isoxazole-5(4 H)-one derivatives, which are obtained in high 
yields under these conditions. THS was chosen due to the well-established advantages 
of solid acid catalysts in one-pot multicomponent reactions. The synthesized derivatives 
were characterized by standard spectroscopic techniques.

To synthesize Isoxazole-5(4 H)-one derivatives, substituted aldehydes, ethyl acetoac-
etate, hydroxylamine hydrochloride, and THS were reacted in aqueous medium. Under 
optimized conditions (10 mol% THS, R.T., 25 min), the products were obtained in high 
to excellent yields (Scheme 1).

After that, we used the optimized conditions to perform the condensation reaction of 
aromatic aldehydes containing both electron-donating and electron-withdrawing groups 
for the synthesis of isoxazole-5(4 H)-ones, using 10 mol% THS in an aqueous medium at 
R.T. (Table 1).

The proposed mechanism for the synthesis of Isoxazole-5(4  H)-ones is presented in 
Fig. 3 The reaction begins with the activation of the carbonyl group of ethyl acetoacetate 
(A) by the Theophylline Hydrogen Sulfate (THS) catalyst, enhancing its electrophilicity 
(B). This activated species reacts with hydroxylamine to form intermediate (C), which 
further undergoes condensation with the activated aldehyde via a Knoevenagel reaction 
to give intermediate (H). Subsequent intramolecular cyclization followed by elimination 
of ethanol affords the target isoxazole-5(4 H)-one derivative (K). The THS catalyst thus 
plays a dual role, both in facilitating carbonyl activation and in promoting condensation 
and cyclization, leading to efficient product formation.

The primary objective of this investigation was to explore the catalytic efficiency for 
generating Isoxazole-5(4 H)-ones. The model reaction selected involved the interaction 
of aldehyde with ethyl aceto-acetate and hydroxyl amine hydrochloride (refer to Table 2). 
After 5 h. of reflux and R.T. stirring of the reaction mixture in water, a trace quantity of 
product had been generated (Table 2, Entries 1, 2). However, employing 5 mol% THS at 
R.T. in water and also in Ethanol: Water resulted in a 76–80% yield of the desired prod-
uct (Table 2, Entries 3, 4).

To optimize reaction conditions, several experiments were conducted, exploring dif-
ferent solvents, temperatures, and catalyst. Various solvents such as water, methanol, 
ethanol, ethanol: water, were examined (Table 2, Entries 5–7). Notably, the use of water 
as the solvent system yielded a significantly high product yield (Table 2, Entry 8). In con-
trast, other solvents, including ethanol: water, ethanol, methanol, provided lesser yields 
than Water (Table 2, Entries 1–7, and 9).

The suitability of the aqueous medium for this transformation was confirmed. Sub-
sequently, catalyst loading at different temperatures, including R.T., and reflux, was 
examined. The results revealed that a 10% loading of THS was optimal for this reaction. 

Scheme 1  THS mediated synthesis of Isoxazole-5(4 H)-ones
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Table 2  Screening of parameters for the synthesis of Isoxazole-5(4 H)-ones

CHO

O2N OEt

O O
NH2OH.HCl

O2N N
O

O
THS (10mol%)

H2O,R.T.

Entry THS (mol %) Solvent/conditions Time Isolated yields (%)
1. Catalyst free Water, r. t 5 h Trace
2. Catalyst free Water, reflux 5 h Trace
3. 5 mol % Ethanol: Water, r. t 2.8 h 76
4. 5 mol % Water, r. t 2 h 80
5. 10 mol % Ethanol: Water, r. t 35 min 90
6. 10 mol % Ethanol 40 min 86
7. 10 mol % Methanol 1 h 84
8. 10 mol % Water, r. t 25 min 96
9. 15 mol % Water, r. t 28 min 92
Reaction Condition: Aldehyde (1mmol), Ethyl aceto acetate (1mmol), Hydroxylamine hydrochloride (1mmol), H2O (5 ml), 
THS (10 mol%),. r. t (Room temperature)

Fig. 3  A plausible reaction mechanism for the synthesis of Isoxazole-5(4 H)-ones catalyzed by Theophylline Hydro-
gen Sulfate (THS) in aqueous medium
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Reducing to 5 mol% or increasing to 15 mol% did not significantly enhance the product 
yield (Table 2, Entries 4 and 9).

3.1   Recyclability of catalyst

The recyclability of the THS catalyst was evaluated under the optimized reaction condi-
tions. After each cycle, the catalyst was separated from the reaction mixture by simple 
filtration. To remove any adsorbed organic impurities, the filtrate was extracted with 
ethyl acetate, and the aqueous layer containing THS was concentrated for reuse [50]. As 
shown in Fig. 4, the catalyst could be reused for five consecutive cycles with only a slight 
decrease in yield (from 96% in the first cycle to 90% in the fifth cycle). This demonstrates 
the high stability, cost-effectiveness, and environmental friendliness of THS for isoxazole 
synthesis.

In this study, we have comparatively studied the impact of THS as a catalyst with pre-
viously documented catalysts in the synthesis of Isoxazole-5(4H)-ones derivatives, with 
the outcomes presented in Table 3. Moreover, Solid acid catalyst in aqueous medium, 
this procedure presents environmentally friendly advantages compared to methods con-
ducted in organic solvents. This heterocycle formation reaction is favored for several 
reasons, including relatively shorter reaction times, higher yield, increased efficiency, 

Table 3  A comparative study with reported reaction conditions
Sr. no. Catalyst Solvent/condition Time (min) Yield % Reference
1. Lemon Juice H2O: EtOH (9:1), 90 °C 50–60 90–98  [61]
2. NH2-MMT H2O, 30 °C 10–50 80–97  [62]
3. Nano-MMT-Sn H2O, 30 °C 20 96  [63]
4. Visible light sodium acetate in aqueous ethanol, hν 5–10 56–89  [64]
5. Antimony trichloride H2O, r. t 120 90  [65]
6. PDAN-Ni@Fe3O4 H2O, 50 °C 25 95  [66]
7. Sulfated polyborate Solvent free, 80 °C 15 90  [67]
8. NaHSO4/SiO2 Toluene 50 94  [68]
8. THS H2O, r. t 25 96 Present work

Fig. 4  Recyclability of Theophylline Hydrogen Sulfate (THS)
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and straightforward workup procedures, strongly indicate that THS serves as a compe-
tent and sustainable acid catalyst for this methodology.

  

4  Conclusion
In conclusion, we have successfully developed an efficient and environmentally sustain-
able method for the synthesis of Isoxazole-5(4 H)-one derivatives using THS as a reus-
able solid acid catalyst. The catalyst not only demonstrated excellent activity and high 
product yields but also offered operational simplicity, as it can be easily recovered by 
simple filtration without the need for column chromatography. Additionally, the use of 
water as a reaction medium, mild conditions, and the recyclability of THS make this 
protocol a cost-effective and eco-friendly alternative compared to conventional meth-
ods. Therefore, this green approach has strong potential for wider application in sus-
tainable organic synthesis and could serve as a viable strategy for large-scale industrial 
processes.
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