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1 Introduction

The fields of chemical industries and processes have seen tremendous improvements
in recent decades. These industries, however, have had a negative impact on human
health, the environment, and animals. As a result, there is an increasing trend in chemi-
cal research to eliminate or reduce hazardous chemical processes. Because of this, green
chemistry has become more and more well-known among chemists. Green chemistry
is a collection of 12 principles that, when followed, result in ecologically beneficial and
healthy processes and reactions. This method eliminates the hazards connected with
harmful compounds while also lowering energy usage and increasing efficiency [1-3].

Multi-component reactions (MCRs) provide a highly efficient way of creating desired
chemicals in a remarkably short duration [4—6]. They have various advantages, includ-
ing shorter reaction times, higher yields, lower costs, and less waste generation. Notably,
nearly all of the reactants in MCRs are actively involved in product creation, removing
the need to segregate intermediates. This is consistent with green substituted chemistry
principles, reduces energy usage, and maximizes efficiency [7-9].

Nitrogen-containing heterocyclic compounds are basic building blocks of many syn-
thetic and natural biologically active substances [10-12]. A recent investigation found
that at least one heterocyclic component containing nitrogen is present in over 60% of
small-molecule medications authorized by the US Food and Drug Administration. Isox-
azoles possess a broad range of biological activity and distinctive physicochemical char-
acteristics, making them valuable in medicine, agriculture, and technology, as well as in
organic synthesis [13]. Their stability as aromatic heterocycles, primarily due to a weak
oxygen-nitrogen bond, allows for modification without opening the five-membered
heterocyclic ring. While maintaining their cyclic structure, isoxazoles can sometimes
be transformed into functionalized acyclic compounds, further enhancing their versa-
tility in various applications. Some natural sources like Amanita muscaria and legume
seeds also contain the isoxazole ring [14]. Isoxazole and its derivatives are a notewor-
thy class of compounds because they have a heterocyclic structure that includes both
nitrogen and oxygen. Synthesis of Isoxazole derivatives using methods such as cycload-
dition, cyclomerization, condensation, and functionalization. Numerous fields, includ-
ing organic synthesis, medicinal chemistry, the pharmaceutical industry, optoelectronic
device development, and light-conversion molecular systems, find wide uses for them
[15] and some finding application in agrochemical compounds. To illustrate, the isox-
azole structure is present in merocyanine dyes used in optical recording, nonlinear
optical research, and certain liquid crystalline materials [16—18] Additionally, isoxa-
zole compounds possess diverse biological properties, including anti-obesity [19], anti-
inflammatory [20], Antifungal [21], anticancer [22], antitumor [23], antibacterial [24],
anticonvulsant [25], and anti-HIV [26] activities (Fig. 1).

Breast cancer ranks as the second leading cause of death among women. While sev-
eral FDA-approved drugs exist for its treatment, they often encounter challenges such
as drug resistance, toxicity, and selectivity issues. Additionally, alternative therapies like
hormonal therapy, surgery, radiotherapy, and immune therapy, although utilized, often
come with side effects including bioavailability concerns, lack of selectivity, and phar-
macokinetic-pharmacodynamic complications. Consequently, there’s a pressing demand
for the development of new compounds that are both non-toxic and more efficient in
cancer treatment. In recent years, isoxazole derivatives have garnered attention due
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Fig. 1 Biological scaffolds of Isoxazole-5(4 H)-ones

to their promising anticancer properties with minimal side effects. These derivatives
exhibit anticancer activity through various mechanisms, including apoptosis induction,
aromatase inhibition, disruption of tubulin assembly, topoisomerase inhibition, HDAC
inhibition, and ERa inhibition [27].

The arrangement of oxygen and nitrogen atoms in the isoxazole moiety, with a low
bond dissociation energy, renders it weakly basic and susceptible to breaking, particu-
larly under conditions like photolysis or thermolysis due to the fragility of the nitro-
gen-oxygen bond. Chemically, the isoxazole moiety can undergo electrophilic aromatic
substitution at the 4-position and nucleophilic aromatic substitution at the 3 and 5
positions of the isoxazole ring. Additionally, deprotonation of the isoxazole moiety
may initiate ring-opening reactions, leading to further substitution, which can enhance
therapeutic activity. Isoxazole derivatives, forming a distinctive and unified class of com-
pounds, showcase antibiotic, antiproliferative, and antiviral properties, and also serve as
modulators of nicotinic receptors. Using 3,5-diarylsubstituted isoxazoles to create novel
drug-like compounds and assessing their biological effects against various cancer cell
lines, as well as an immortalized normal prostate epithelial cell [28].

Several catalysts were employed to synthesize Isoxazole molecule such as Ag, Ce@
SNC/A1SCA [29], Triphenylphosphine [30], Natural deep eutectic solvents (NaDESs)
[31], Eucalyptol [32], Natural sunlight [33], GO@Fe(ClO,), [34], WEOFPA/glycerol [35],
Lipase [36], Citrazinic acid [37], Vitamin B1 [38], Nano-MgO [39], Boric acid [40], Imid-
azole [41], Fe;0,@C-SO3H [42], Phthalimide-N-oxyl salts [43], Cu/TCH-pr@SBA-15
[44], Ag/SiO2 [45], Sodium malonate [46]. Although the mentioned protocols have pro-
duced positive results in many cases, they have a number of drawbacks. These include
the use of costly catalysts or reagents, lengthy reaction periods, complex workup pro-
cesses, severe reaction conditions, the reliance on metal catalysts, the requirement for
large amounts of catalyst or specialized equipment, and the use of poisonous organic
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solvents. Therefore, a highly effective, eco-friendly, simplified, applicable, and high-
yielding method for synthesizing different isoxazole-5(4H)-ones scaffolds needs to be
investigated.

As a result, the use of solid acid catalysts is a feasible alternative to traditional and
severe liquid acids such as nitric acid, hydrochloric acid, and sulfuric acid, which can-
not be used in stoichiometric amounts [47]. The ease of separating the catalyst from the
product is a vital consideration for chemists, and solid acid catalysts facilitate this sepa-
ration, making them much applicable in diverse reactions. Notable benefits of solid acid
catalysts include low toxicity, readily available precursors, high stability and good selec-
tivity, use in low-energy synthesis processes for a variety of organic transformations, and
economic and commercial viability [48]. Isoxazole derivatives exhibit a broad range of
therapeutic effects, including anti-cancer, antiviral, antimicrobial, and anti-inflamma-
tory properties. Within the isoxazole structure, oxygen and nitrogen atoms are arranged
in a 1:2 ratio, with relatively low bond dissociation energies: nitrogen-nitrogen (N-N)
bond energy is 945.4 kJ/mol !, nitrogen-oxygen (N-O) bond energy is 630.7 kJ/mol !, and
carbon-oxygen (C-O) bond energy is 1076.4 k]J/mol 1 [49].

Theophylline Hydrogen Sulfate (THS) is a solid acid catalyst derived from the naturally
occurring xanthine alkaloid, theophylline. It is highly efficient, reusable, and environ-
mentally friendly, making it an attractive catalyst for green organic synthesis. THS pro-
motes various organic transformations under mild reaction conditions, often in aqueous
media, minimizing the need for toxic solvents. Its solid nature facilitates easy recovery
and reuse, contributing to sustainable chemistry practices. These properties, along with
its high catalytic activity, make THS an ideal choice for the synthesis of heterocyclic
compounds, including isoxazole derivatives.

We have introduced a successful and appropriate procedure for producing Isoxazole-
5(4H)-ones derivatives by considering the previously mentioned details on synthetic
techniques and catalysts, and our purpose to creating environmentally friendly synthetic
approaches,. This involves the reaction of different aldehydes, ethyl aceto-acetate and
hydroxyl amine hydrochloride using THS as a sustainable solid acid catalyst. (Fig. 2)
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Fig. 2 Theophylline Hydrogen Sulphate (THS) catalyst's structure
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2 Experimental

2.1 General

The chemical firms Loba and Sigma-Aldrich provided all of the compounds, which were
utilised without further purification. Water that had been double-distilled was used as
the aqueous medium. Using melting/boiling point equipment (Eq. 730 A-EQUIPTRON-
ICS), melting points were determined to be incorrect. The 'H and *C NMR spectra
were obtained at 400 and 100 MHz, respectively, using a Bruker or JEOL spectrometer.
Electrospray ionization (ESI) was used using a Waters Synapt G2 to record high-resolu-

tion mass spectra.

2.2 General procedure for the synthesis of THS

A mixture of 50 ml of chloroform and 10 mmol of theophylline was stirred at R.T. for
fifteen minutes in a clean, and dry round-bottom flask. The mixture was then gradually
mixed with 10 mmol of sulfuric acid. For two more hours, the reaction stirred continu-
ously. After filtering, the resultant precipitate underwent several acetone leaching proce-
dures to eliminate any remaining sulfuric acid [50, 51]. Ultimately, the white powder that
was produced was dried for two hours in an oven. The spectrum data for the synthesized

catalyst are included in the supplemental section.

2.3 General procedure for the synthesis of Isoxazole-5(4 H)-ones

A mixture containing aldehyde (1 mmol), ethyl aceto-acetate (1 mmol), hydroxyl amine
hydrochloride (1 mmol), and 10 mol% THS in 5 ml double-distilled water was sub-
jected to stirring using a magnetic stirrer at R.T. Within 25 min, the crude product was
obtained. The progress of the reaction was monitored by Thin Layer Chromatography
(TLC) in n-hexane: ethyl acetate (7:3). The solid product was isolated through simple
filtration with water washings. The separated solid product underwent recrystallization
using ethanol and was subsequently characterized through Nuclear Magnetic Resonance
(NMR), and High-Resolution Mass Spectrometry (HRMS).

2.4 Spectral data of THS catalyst

THS: White Solid, 'H NMR (400 MHz, CDCl,) &: 3.46 (s, 3 H), 3.65 (s, 3 H), 7.52 (s,
1H), 7.78 (broad, 3 H). 3C NMR (100 MHz, CDCl,, § ppm): 28.60, 30.14, 105.76, 139.69,
149.32, 152.83, 153.68.

2.5 Spectroscopic data for some target compounds are as follows

1. 3-methyl-4-(4-methoxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 12)
Yellow Solid, m.p. 176 °C, "H NMR (400 MHz, CDCl,) &: 2.28 (s, 3 H), 3.92 (s, 3 H),
7.00-7.02 (d, 2 H), 7.34 (s, 1H), 8.43-8.45 (d, 2 H); 3C NMR (100 MHz, CDCl,) &:
11.67, 55.73, 114.67, 116.37, 125.84, 136.98, 149.35, 161.30, 164.63, 168.79; HRMS:
218.0817 (M + 1).

2. 3-methyl-4-(4-(dimethylaminobenzylidene)isoxazol-5(4H)-one (Table 1, entry 3)
Red Solid, m.p. 206 °C, 'H NMR (400 MHz, CDCl,) &: 2.24 (s, 3 H), 3.16 (s, 6 H),
6.70-6.73 (d, 2 H), 7.21 (s, 1H), 8.39-8.41 (d, 2 H); 3C NMR (100 MHz, CDCl,) &:
11.73, 40.12, 111.25, 111.53, 121.55, 137.62, 149.24, 154.25, 161.57, 170.12; HRMS:
231.1133 (M +1).
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3-methyl-4-(4-nitrobenzylidene)isoxazol-5(4H)-one (Table 1, entry 2)

Yellow Solid, m.p. 142 °C, '"H NMR (400 MHz, CDCl,) &: 2.36 (s, 3 H), 7.48-7.51 (d,
4 H), 10.17 (s, 1H); *C NMR (100 MHz, CDCly) &: 123.71, 124.08, 124.35, 127.68,
130.53, 131.63, 133.99, 138.19, 148.37.
3-methyl-4-(3,4,5-trimethoxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 6)
Yellow solid, m.p. 128 °C, 'H NMR (400 MHz, CDCL,) &: 2.30 (s, 3 H), 3.96 (s, 6 H),
4.00 (s, 3 H), 6.82 (s, 1H), 7.27 (s, 2 H); *C NMR (100 MHz, CDCl,) &: 11.69, 56.42,
61.22,1.4.09, 111.80, 118.00, 127.73, 143.87, 149.82, 152.92, 153.50, 161.19, 168.58.
3-methyl-4-(4-chlorobenzylidene)isoxazol-5(4H)-one (Table 1, entry 5)

Bright yellow solid, m.p. 134 °C, "H NMR (400 MHz, CDCl,) &: 2.498 (s, 3 H), 6.915—
6.921 (d, 2 H), 7.548 (s, 1H), 8.199-8.202 (d, 2 H); 3C NMR (100 MHz, CDCl,) &:
11.76, 115.98, 116.87, 119.66, 120.01, 125.23, 132.46, 137.38, 145.60, 160.12, 163.01.
3-methyl-4-(2-hydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 7)

Light yellow, m.p. 196 °C, "H NMR (400 MHz, CDCl,) &: 2.216 (s, 3 H), 6.901-6.913
(m, 2 H), 7.541-7.563 (m, 1H), 7.991 (s, 1H), 8.734—8.749 (d, 1H), 9.983 (s, 1H); 3C
NMR (100 MHz, CDCl;) &: 11.72, 116.73, 116.98, 119.63, 119.99, 133.78, 138.20,
144.53, 160.21, 163.53, 168.51.

3-methyl-4-benzylideneisoxazol-5(4H)-one (Table 1, entry 1)

Yellow Solid, m.p. 196 °C, 'H NMR (400 MHz, CDCl,) &: 2.25 (s, 3 H), 7.52-7.55 (t,
2 H), 7.60-7.64 (t, 1H), 7.98 (s, 1H), 8.34—8.39 (d, 2 H); "*C NMR (100 MHz, CDCl,)
3:11.70, 118.30, 128.98, 132.98, 133.95, 134.25, 151.99, 152.53, 168.21.
3-methyl-4-(4-fluorobenzylidene)isoxazol-5(4H)-one (Table 1, entry 4)

Pale yallow Solid, m.p. 137 °C, 'H NMR (400 MHz, CDCl;) &: 3.09 (s, 3 H), 7.64 (d,
2H),7.92 (s, 1H), 8.41 (d, 2 H); 3C NMR (100 MHz, CDCl;) 8:11, 128,134, 133, 164.6,
168.3.

3-methyl-4-(2-nitrobenzylidene)isoxazol-5(4H)-one (Table 1, entry 8)

Yellow Solid, m.p. 137 °C, 'H NMR (400 MHz, CDCl;) 8: 2.209 (s, 3 H), 6.899-6.904
(m, 2 H), 7.540~7.561 (m, 1H), 7.956 (s, 1H), 8.726-8.732 (d, 1H); "3C NMR (100 MHz,
CDCl,) 8:11.68, 116.70, 116.90, 119.59, 119.98, 133.68, 138.25, 144.56, 160.25, 163.65,
168.58.

10. 3-methyl-4-(3-methoxy, 4-hydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 9)

Orange Solid, m.p. 212 °C, 'H NMR (400 MHz, CDCl,) &: 2.231 (s, 3 H), 3.836 (s, 3 H),
6.951 (s, 1H), 7.565-7.861 (m, 2 H), 8.499 (s, 1H), 10.432 (s, 1H); *C NMR (100 MHz,
CDCl) &: 11.69, 55.99, 114.15, 116.30, 117.15, 125.59, 132.48, 147.68, 152.25, 154.26,
162.75, 169.45.

11. 3-methyl-4-(3, 4-dihydroxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 10)

Yellow solid, m.p. 210 °C, 'H NMR (400 MHz, CDCL) &: 2.41 (s, 3 H), 6.85 (d, 1H),
7.46 (d, 1H), 7.66 (s, 1H), 7.70 (s, 1H), 8.16 (s, LH), 8.70 (s, 1H); *C NMR (100 MHz,
CDCl,) 8: 14.6, 114.8, 115.8, 126.4, 127.3, 128.7, 136.9, 145.8, 146.3, 158.2, 168.7.

12.  3-methyl-4-(2-hydroxynaphthalene-1-ylbenzylidene)isoxazol-5(4H)-one (Table 1,

entry 11)

Yellow solid, m.p. 196 °C, 'H NMR (400 MHz, CDCl;) &: 2.40 (s, 3 H), 7.54-7.67
(m, 3 H), 8.05 (d, 1H), 8.17 (d, 1H), 8.27 (d, 1H), 8.44 (d, 1H), 8.66 (s, 1H); 1>*C NMR
(100 MHz, CDCly) &: 11.5, 121.4, 124.8, 124.40, 126.8, 127.9, 128.15, 130.80, 131.44,
132.89, 149.1, 159.8, 161.8, 167.9, 169.1.
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3 Result and discussion

THS is a solid acid catalyst exhibiting high solubility in water and insolubility in organic
solvents, reflecting its ionic nature [50]. Its aqueous solubility makes it particularly suit-
able for the synthesis of Isoxazole-5(4 H)-one derivatives, which are obtained in high
yields under these conditions. THS was chosen due to the well-established advantages
of solid acid catalysts in one-pot multicomponent reactions. The synthesized derivatives
were characterized by standard spectroscopic techniques.

To synthesize Isoxazole-5(4 H)-one derivatives, substituted aldehydes, ethyl acetoac-
etate, hydroxylamine hydrochloride, and THS were reacted in aqueous medium. Under
optimized conditions (10 mol% THS, R.T., 25 min), the products were obtained in high
to excellent yields (Scheme 1).

After that, we used the optimized conditions to perform the condensation reaction of
aromatic aldehydes containing both electron-donating and electron-withdrawing groups
for the synthesis of isoxazole-5(4 H)-ones, using 10 mol% THS in an aqueous medium at
R.T. (Table 1).

The proposed mechanism for the synthesis of Isoxazole-5(4 H)-ones is presented in
Fig. 3 The reaction begins with the activation of the carbonyl group of ethyl acetoacetate
(A) by the Theophylline Hydrogen Sulfate (THS) catalyst, enhancing its electrophilicity
(B). This activated species reacts with hydroxylamine to form intermediate (C), which
further undergoes condensation with the activated aldehyde via a Knoevenagel reaction
to give intermediate (H). Subsequent intramolecular cyclization followed by elimination
of ethanol affords the target isoxazole-5(4 H)-one derivative (K). The THS catalyst thus
plays a dual role, both in facilitating carbonyl activation and in promoting condensation
and cyclization, leading to efficient product formation.

The primary objective of this investigation was to explore the catalytic efficiency for
generating Isoxazole-5(4 H)-ones. The model reaction selected involved the interaction
of aldehyde with ethyl aceto-acetate and hydroxyl amine hydrochloride (refer to Table 2).
After 5 h. of reflux and R.T. stirring of the reaction mixture in water, a trace quantity of
product had been generated (Table 2, Entries 1, 2). However, employing 5 mol% THS at
R.T. in water and also in Ethanol: Water resulted in a 76—80% yield of the desired prod-
uct (Table 2, Entries 3, 4).

To optimize reaction conditions, several experiments were conducted, exploring dif-
ferent solvents, temperatures, and catalyst. Various solvents such as water, methanol,
ethanol, ethanol: water, were examined (Table 2, Entries 5-7). Notably, the use of water
as the solvent system yielded a significantly high product yield (Table 2, Entry 8). In con-
trast, other solvents, including ethanol: water, ethanol, methanol, provided lesser yields
than Water (Table 2, Entries 1-7, and 9).

The suitability of the aqueous medium for this transformation was confirmed. Sub-
sequently, catalyst loading at different temperatures, including R.T., and reflux, was
examined. The results revealed that a 10% loading of THS was optimal for this reaction.

O:N

CHO o o THS (10 mol%) N
O UL, o e — L
ON OEt 2V R. 1. N

Scheme 1 THS mediated synthesis of Isoxazole-5(4 H)-ones
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Fig.3 Aplausible reaction mechanism for the synthesis of Isoxazole-5(4 H)-ones catalyzed by Theophylline Hydro-
gen Sulfate (THS) in aqueous medium

Table 2 Screening of parameters for the synthesis of Isoxazole-5(4 H)-ones

o
CHO o o THS (10 mol%) B
/©/ ’ Moa + NHOH. Hcl H,0,R.T. \N’O
O;N O,N
Entry THS (mol %) Solvent/conditions Time Isolated yields (%)
1. Catalyst free Water, 1. t 5h Trace
2. Catalyst free Water, reflux 5h Trace
3. 5 mol % Ethanol: Water, r. t 28h 76
4. 5 mol % Water, r. t 2h 80
5. 10 mol % Ethanol: Water, r. t 35 min 90
6. 10 mol % Ethanol 40 min 86
7. 10 mol % Methanol Th 84
8. 10 mol % Water, r. t 25 min 926
9. 15 mol % Water, 1. t 28 min 92

Reaction Condition: Aldehyde (Tmmol), Ethyl aceto acetate (Immol), Hydroxylamine hydrochloride (Immol), H,0 (5 ml),
THS (10 mol%),. r. t (Room temperature)
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Fig. 4 Recyclability of Theophylline Hydrogen Sulfate (THS)
Table 3 A comparative study with reported reaction conditions
Sr.no. Catalyst Solvent/condition Time (min) Yield % Reference
1. Lemon Juice H,0: EtOH (9:1), 90 °C 50-60 90-98 [61]
2. NH,-MMT H,0,30°C 10-50 80-97 [62]
3. Nano-MMT-Sn H,0,30°C 20 96 [63]
4. Visible light sodium acetate in aqueous ethanol, hv 5-10 56-89 [64]
5. Antimony trichloride  H,O,r.t 120 90 [65]
6. PDAN-Ni@Fe;0, H,0, 50 °C 25 95 [66]
7. Sulfated polyborate  Solvent free, 80 °C 15 90 [67]
8. NaHSO,/SiO, Toluene 50 94 [68]
8. THS H,O, .t 25 96 Present work

Reducing to 5 mol% or increasing to 15 mol% did not significantly enhance the product
yield (Table 2, Entries 4 and 9).

3.1 Recyclability of catalyst

The recyclability of the THS catalyst was evaluated under the optimized reaction condi-
tions. After each cycle, the catalyst was separated from the reaction mixture by simple
filtration. To remove any adsorbed organic impurities, the filtrate was extracted with
ethyl acetate, and the aqueous layer containing THS was concentrated for reuse [50]. As
shown in Fig. 4, the catalyst could be reused for five consecutive cycles with only a slight
decrease in yield (from 96% in the first cycle to 90% in the fifth cycle). This demonstrates
the high stability, cost-effectiveness, and environmental friendliness of THS for isoxazole
synthesis.

In this study, we have comparatively studied the impact of THS as a catalyst with pre-
viously documented catalysts in the synthesis of Isoxazole-5(4H)-ones derivatives, with
the outcomes presented in Table 3. Moreover, Solid acid catalyst in aqueous medium,
this procedure presents environmentally friendly advantages compared to methods con-
ducted in organic solvents. This heterocycle formation reaction is favored for several

reasons, including relatively shorter reaction times, higher yield, increased efficiency,



Dhane et al. Discover Chemistry (2025) 2:345 Page 12 of 15

and straightforward workup procedures, strongly indicate that THS serves as a compe-
tent and sustainable acid catalyst for this methodology.

4 Conclusion

In conclusion, we have successfully developed an efficient and environmentally sustain-
able method for the synthesis of Isoxazole-5(4 H)-one derivatives using THS as a reus-
able solid acid catalyst. The catalyst not only demonstrated excellent activity and high
product yields but also offered operational simplicity, as it can be easily recovered by
simple filtration without the need for column chromatography. Additionally, the use of
water as a reaction medium, mild conditions, and the recyclability of THS make this
protocol a cost-effective and eco-friendly alternative compared to conventional meth-
ods. Therefore, this green approach has strong potential for wider application in sus-
tainable organic synthesis and could serve as a viable strategy for large-scale industrial

processes.
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