

RESEARCH

Open Access

Green synthesis of Isoxazole-5(4 H)-one derivatives using Theophylline Hydrogen Sulfate as a catalyst

Nilam S. Dhane^{1,2} , Rohit G. Patil², Nilesh T. Pandit², Surekha N. Jadhav³ , Samadhan P. Pawar¹ , Pravina B. Piste¹ , Santosh B. Kamble⁴ and Kishor V. Gaikwad^{1*}

*Correspondence:

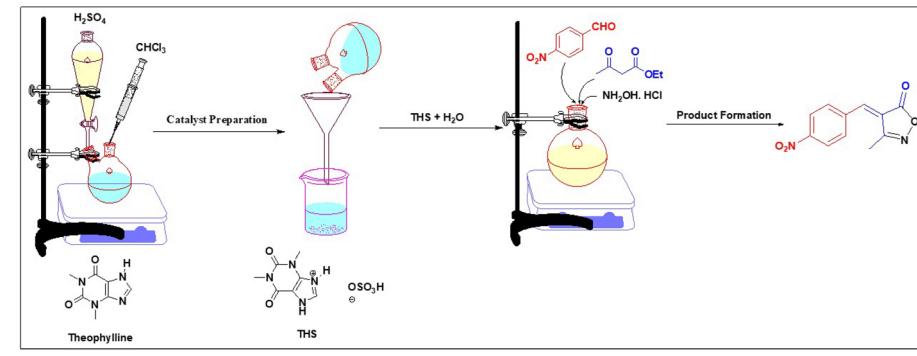
Kishor V. Gaikwad

kishuvgaikwad@rediffmail.com

¹Rajarshi Chhatrapati Shahu College, Kolhapur, India

²Yashavantrao Chavan Institute of Science, Satara, Constituent College of Karmaveer Bhaurao Patil University, Satara, India

³R. B. Attal Art's, Science and Commerce College, Georai, Beed, India

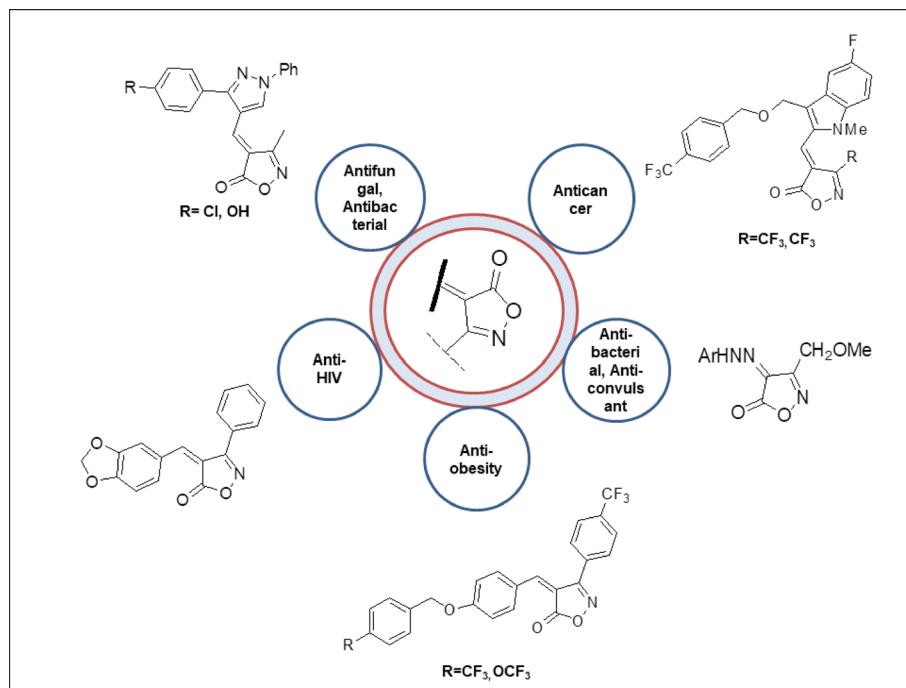

⁴Sadguru Gadage Maharaj College, Karad, India

Abstract

A green and eco-friendly synthetic protocol has been established for the preparation of a series of isoxazole derivatives using Theophylline Hydrogen Sulfate (THS) as a highly efficient and reusable solid acid catalyst. In this method, aldehydes react smoothly with ethyl acetoacetate and hydroxylamine hydrochloride in aqueous medium under ambient conditions with continuous stirring. The use of water as a solvent, along with THS, not only promotes the reaction efficiently but also eliminates the need for hazardous organic solvents or harsh conditions. The protocol provides multiple advantages such as short reaction times, high to excellent product yields, operational simplicity, and easy catalyst recovery and reuse. Owing to its environmentally benign nature, low cost, and sustainability, this method represents a practical approach for the green synthesis of isoxazole derivatives and can be a promising alternative for large-scale and industrial applications.

Keywords Isoxazole-5(4H)-one derivatives, THS, Green catalysis, Aqueous medium, Heterocyclic synthesis

Graphical abstract


1 Introduction

The fields of chemical industries and processes have seen tremendous improvements in recent decades. These industries, however, have had a negative impact on human health, the environment, and animals. As a result, there is an increasing trend in chemical research to eliminate or reduce hazardous chemical processes. Because of this, green chemistry has become more and more well-known among chemists. Green chemistry is a collection of 12 principles that, when followed, result in ecologically beneficial and healthy processes and reactions. This method eliminates the hazards connected with harmful compounds while also lowering energy usage and increasing efficiency [1–3].

Multi-component reactions (MCRs) provide a highly efficient way of creating desired chemicals in a remarkably short duration [4–6]. They have various advantages, including shorter reaction times, higher yields, lower costs, and less waste generation. Notably, nearly all of the reactants in MCRs are actively involved in product creation, removing the need to segregate intermediates. This is consistent with green substituted chemistry principles, reduces energy usage, and maximizes efficiency [7–9].

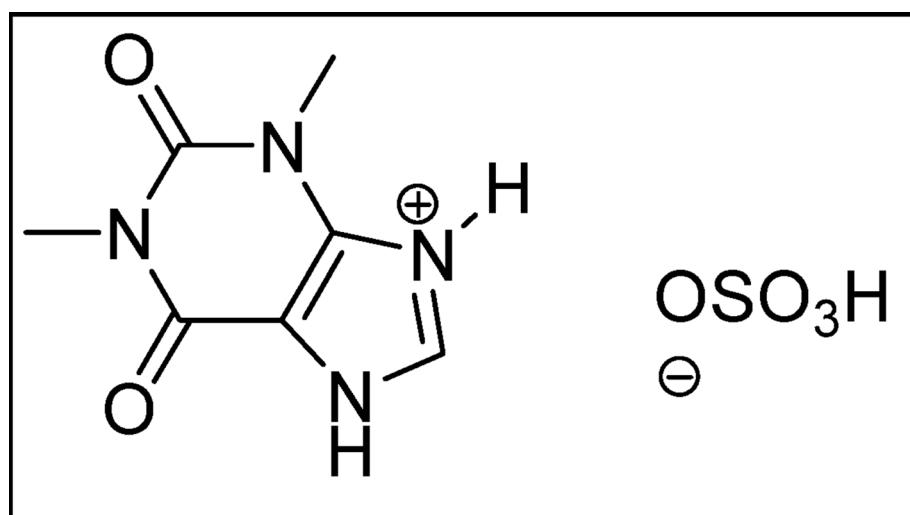
Nitrogen-containing heterocyclic compounds are basic building blocks of many synthetic and natural biologically active substances [10–12]. A recent investigation found that at least one heterocyclic component containing nitrogen is present in over 60% of small-molecule medications authorized by the US Food and Drug Administration. Isoxazoles possess a broad range of biological activity and distinctive physicochemical characteristics, making them valuable in medicine, agriculture, and technology, as well as in organic synthesis [13]. Their stability as aromatic heterocycles, primarily due to a weak oxygen-nitrogen bond, allows for modification without opening the five-membered heterocyclic ring. While maintaining their cyclic structure, isoxazoles can sometimes be transformed into functionalized acyclic compounds, further enhancing their versatility in various applications. Some natural sources like *Amanita muscaria* and legume seeds also contain the isoxazole ring [14]. Isoxazole and its derivatives are a noteworthy class of compounds because they have a heterocyclic structure that includes both nitrogen and oxygen. Synthesis of Isoxazole derivatives using methods such as cycloaddition, cyclomerization, condensation, and functionalization. Numerous fields, including organic synthesis, medicinal chemistry, the pharmaceutical industry, optoelectronic device development, and light-conversion molecular systems, find wide uses for them [15] and some finding application in agrochemical compounds. To illustrate, the isoxazole structure is present in merocyanine dyes used in optical recording, nonlinear optical research, and certain liquid crystalline materials [16–18]. Additionally, isoxazole compounds possess diverse biological properties, including anti-obesity [19], anti-inflammatory [20], Antifungal [21], anticancer [22], antitumor [23], antibacterial [24], anticonvulsant [25], and anti-HIV [26] activities (Fig. 1).

Breast cancer ranks as the second leading cause of death among women. While several FDA-approved drugs exist for its treatment, they often encounter challenges such as drug resistance, toxicity, and selectivity issues. Additionally, alternative therapies like hormonal therapy, surgery, radiotherapy, and immune therapy, although utilized, often come with side effects including bioavailability concerns, lack of selectivity, and pharmacokinetic-pharmacodynamic complications. Consequently, there's a pressing demand for the development of new compounds that are both non-toxic and more efficient in cancer treatment. In recent years, isoxazole derivatives have garnered attention due

Fig. 1 Biological scaffolds of Isoxazole-5(4 H)-ones

to their promising anticancer properties with minimal side effects. These derivatives exhibit anticancer activity through various mechanisms, including apoptosis induction, aromatase inhibition, disruption of tubulin assembly, topoisomerase inhibition, HDAC inhibition, and ER α inhibition [27].

The arrangement of oxygen and nitrogen atoms in the isoxazole moiety, with a low bond dissociation energy, renders it weakly basic and susceptible to breaking, particularly under conditions like photolysis or thermolysis due to the fragility of the nitrogen-oxygen bond. Chemically, the isoxazole moiety can undergo electrophilic aromatic substitution at the 4-position and nucleophilic aromatic substitution at the 3 and 5 positions of the isoxazole ring. Additionally, deprotonation of the isoxazole moiety may initiate ring-opening reactions, leading to further substitution, which can enhance therapeutic activity. Isoxazole derivatives, forming a distinctive and unified class of compounds, showcase antibiotic, antiproliferative, and antiviral properties, and also serve as modulators of nicotinic receptors. Using 3,5-diarylsubstituted isoxazoles to create novel drug-like compounds and assessing their biological effects against various cancer cell lines, as well as an immortalized normal prostate epithelial cell [28].


Several catalysts were employed to synthesize Isoxazole molecule such as Ag, Ce@SNC/A1SCA [29], Triphenylphosphine [30], Natural deep eutectic solvents (NaDESs) [31], Eucalyptol [32], Natural sunlight [33], GO@Fe(ClO₄)₃ [34], WEOFPA/glycerol [35], Lipase [36], Citrazinic acid [37], Vitamin B1 [38], Nano-MgO [39], Boric acid [40], Imidazole [41], Fe₃O₄@C-SO₃H [42], Phthalimide-N-oxyl salts [43], Cu/TCH-pr@SBA-15 [44], Ag/SiO₂ [45], Sodium malonate [46]. Although the mentioned protocols have produced positive results in many cases, they have a number of drawbacks. These include the use of costly catalysts or reagents, lengthy reaction periods, complex workup processes, severe reaction conditions, the reliance on metal catalysts, the requirement for large amounts of catalyst or specialized equipment, and the use of poisonous organic

solvents. Therefore, a highly effective, eco-friendly, simplified, applicable, and high-yielding method for synthesizing different isoxazole-5(4*H*)-ones scaffolds needs to be investigated.

As a result, the use of solid acid catalysts is a feasible alternative to traditional and severe liquid acids such as nitric acid, hydrochloric acid, and sulfuric acid, which cannot be used in stoichiometric amounts [47]. The ease of separating the catalyst from the product is a vital consideration for chemists, and solid acid catalysts facilitate this separation, making them much applicable in diverse reactions. Notable benefits of solid acid catalysts include low toxicity, readily available precursors, high stability and good selectivity, use in low-energy synthesis processes for a variety of organic transformations, and economic and commercial viability [48]. Isoxazole derivatives exhibit a broad range of therapeutic effects, including anti-cancer, antiviral, antimicrobial, and anti-inflammatory properties. Within the isoxazole structure, oxygen and nitrogen atoms are arranged in a 1:2 ratio, with relatively low bond dissociation energies: nitrogen-nitrogen (N-N) bond energy is 945.4 kJ/mol¹, nitrogen-oxygen (N-O) bond energy is 630.7 kJ/mol¹, and carbon-oxygen (C-O) bond energy is 1076.4 kJ/mol¹ [49].

Theophylline Hydrogen Sulfate (THS) is a solid acid catalyst derived from the naturally occurring xanthine alkaloid, theophylline. It is highly efficient, reusable, and environmentally friendly, making it an attractive catalyst for green organic synthesis. THS promotes various organic transformations under mild reaction conditions, often in aqueous media, minimizing the need for toxic solvents. Its solid nature facilitates easy recovery and reuse, contributing to sustainable chemistry practices. These properties, along with its high catalytic activity, make THS an ideal choice for the synthesis of heterocyclic compounds, including isoxazole derivatives.

We have introduced a successful and appropriate procedure for producing Isoxazole-5(4*H*)-ones derivatives by considering the previously mentioned details on synthetic techniques and catalysts, and our purpose to creating environmentally friendly synthetic approaches,. This involves the reaction of different aldehydes, ethyl aceto-acetate and hydroxyl amine hydrochloride using THS as a sustainable solid acid catalyst. (Fig. 2)

Fig. 2 Theophylline Hydrogen Sulphate (THS) catalyst's structure

2 Experimental

2.1 General

The chemical firms Loba and Sigma-Aldrich provided all of the compounds, which were utilised without further purification. Water that had been double-distilled was used as the aqueous medium. Using melting/boiling point equipment (Eq. 730 A-EQUIPTRON-ICS), melting points were determined to be incorrect. The ¹H and ¹³C NMR spectra were obtained at 400 and 100 MHz, respectively, using a Bruker or JEOL spectrometer. Electrospray ionization (ESI) was used using a Waters Synapt G2 to record high-resolution mass spectra.

2.2 General procedure for the synthesis of THS

A mixture of 50 ml of chloroform and 10 mmol of theophylline was stirred at R.T. for fifteen minutes in a clean, and dry round-bottom flask. The mixture was then gradually mixed with 10 mmol of sulfuric acid. For two more hours, the reaction stirred continuously. After filtering, the resultant precipitate underwent several acetone leaching procedures to eliminate any remaining sulfuric acid [50, 51]. Ultimately, the white powder that was produced was dried for two hours in an oven. The spectrum data for the synthesized catalyst are included in the supplemental section.

2.3 General procedure for the synthesis of Isoxazole-5(4 H)-ones

A mixture containing aldehyde (1 mmol), ethyl aceto-acetate (1 mmol), hydroxyl amine hydrochloride (1 mmol), and 10 mol% THS in 5 ml double-distilled water was subjected to stirring using a magnetic stirrer at R.T. Within 25 min, the crude product was obtained. The progress of the reaction was monitored by Thin Layer Chromatography (TLC) in n-hexane: ethyl acetate (7:3). The solid product was isolated through simple filtration with water washings. The separated solid product underwent recrystallization using ethanol and was subsequently characterized through Nuclear Magnetic Resonance (NMR), and High-Resolution Mass Spectrometry (HRMS).

2.4 Spectral data of THS catalyst

THS: White Solid, ¹H NMR (400 MHz, CDCl₃) δ: 3.46 (s, 3 H), 3.65 (s, 3 H), 7.52 (s, 1H), 7.78 (broad, 3 H). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 28.60, 30.14, 105.76, 139.69, 149.32, 152.83, 153.68.

2.5 Spectroscopic data for some target compounds are as follows

1. 3-methyl-4-(4-methoxybenzylidene)isoxazol-5(4H)-one (Table 1, entry 12)

Yellow Solid, m.p. 176 °C, ¹H NMR (400 MHz, CDCl₃) δ: 2.28 (s, 3 H), 3.92 (s, 3 H), 7.00–7.02 (d, 2 H), 7.34 (s, 1H), 8.43–8.45 (d, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 11.67, 55.73, 114.67, 116.37, 125.84, 136.98, 149.35, 161.30, 164.63, 168.79; HRMS: 218.0817 (M + 1).

2. 3-methyl-4-(4-(dimethylaminobenzylidene)isoxazol-5(4H)-one (Table 1, entry 3)

Red Solid, m.p. 206 °C, ¹H NMR (400 MHz, CDCl₃) δ: 2.24 (s, 3 H), 3.16 (s, 6 H), 6.70–6.73 (d, 2 H), 7.21 (s, 1H), 8.39–8.41 (d, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ: 11.73, 40.12, 111.25, 111.53, 121.55, 137.62, 149.24, 154.25, 161.57, 170.12; HRMS: 231.1133 (M + 1).

3. *3-methyl-4-(4-nitrobenzylidene)isoxazol-5(4H)-one* (Table 1, entry 2)

Yellow Solid, m.p. 142 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.36 (s, 3 H), 7.48–7.51 (d, 4 H), 10.17 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 123.71, 124.08, 124.35, 127.68, 130.53, 131.63, 133.99, 138.19, 148.37.

4. *3-methyl-4-(3,4,5-trimethoxybenzylidene)isoxazol-5(4H)-one* (Table 1, entry 6)

Yellow solid, m.p. 128 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.30 (s, 3 H), 3.96 (s, 6 H), 4.00 (s, 3 H), 6.82 (s, 1H), 7.27 (s, 2 H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.69, 56.42, 61.22, 14.09, 111.80, 118.00, 127.73, 143.87, 149.82, 152.92, 153.50, 161.19, 168.58.

5. *3-methyl-4-(4-chlorobenzylidene)isoxazol-5(4H)-one* (Table 1, entry 5)

Bright yellow solid, m.p. 134 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.498 (s, 3 H), 6.915–6.921 (d, 2 H), 7.548 (s, 1H), 8.199–8.202 (d, 2 H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.76, 115.98, 116.87, 119.66, 120.01, 125.23, 132.46, 137.38, 145.60, 160.12, 163.01.

6. *3-methyl-4-(2-hydroxybenzylidene)isoxazol-5(4H)-one* (Table 1, entry 7)

Light yellow, m.p. 196 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.216 (s, 3 H), 6.901–6.913 (m, 2 H), 7.541–7.563 (m, 1H), 7.991 (s, 1H), 8.734–8.749 (d, 1H), 9.983 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.72, 116.73, 116.98, 119.63, 119.99, 133.78, 138.20, 144.53, 160.21, 163.53, 168.51.

7. *3-methyl-4-benzylideneisoxazol-5(4H)-one* (Table 1, entry 1)

Yellow Solid, m.p. 196 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.25 (s, 3 H), 7.52–7.55 (t, 2 H), 7.60–7.64 (t, 1H), 7.98 (s, 1H), 8.34–8.39 (d, 2 H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.70, 118.30, 128.98, 132.98, 133.95, 134.25, 151.99, 152.53, 168.21.

8. *3-methyl-4-(4-fluorobenzylidene)isoxazol-5(4H)-one* (Table 1, entry 4)

Pale yellow Solid, m.p. 137 °C, ^1H NMR (400 MHz, CDCl_3) δ : 3.09 (s, 3 H), 7.64 (d, 2 H), 7.92 (s, 1H), 8.41 (d, 2 H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11, 128, 134, 133, 164.6, 168.3.

9. *3-methyl-4-(2-nitrobenzylidene)isoxazol-5(4H)-one* (Table 1, entry 8)

Yellow Solid, m.p. 137 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.209 (s, 3 H), 6.899–6.904 (m, 2 H), 7.540–7.561 (m, 1H), 7.956 (s, 1H), 8.726–8.732 (d, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.68, 116.70, 116.90, 119.59, 119.98, 133.68, 138.25, 144.56, 160.25, 163.65, 168.58.

10. *3-methyl-4-(3-methoxy, 4-hydroxybenzylidene)isoxazol-5(4H)-one* (Table 1, entry 9)

Orange Solid, m.p. 212 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.231 (s, 3 H), 3.836 (s, 3 H), 6.951 (s, 1H), 7.565–7.861 (m, 2 H), 8.499 (s, 1H), 10.432 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.69, 55.99, 114.15, 116.30, 117.15, 125.59, 132.48, 147.68, 152.25, 154.26, 162.75, 169.45.

11. *3-methyl-4-(3, 4-dihydroxybenzylidene)isoxazol-5(4H)-one* (Table 1, entry 10)

Yellow solid, m.p. 210 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.41 (s, 3 H), 6.85 (d, 1H), 7.46 (d, 1H), 7.66 (s, 1H), 7.70 (s, 1H), 8.16 (s, 1H), 8.70 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 14.6, 114.8, 115.8, 126.4, 127.3, 128.7, 136.9, 145.8, 146.3, 158.2, 168.7.

12. *3-methyl-4-(2-hydroxynaphthalene-1-ylbenzylidene)isoxazol-5(4H)-one* (Table 1, entry 11)

Yellow solid, m.p. 196 °C, ^1H NMR (400 MHz, CDCl_3) δ : 2.40 (s, 3 H), 7.54–7.67 (m, 3 H), 8.05 (d, 1H), 8.17 (d, 1H), 8.27 (d, 1H), 8.44 (d, 1H), 8.66 (s, 1H); ^{13}C NMR (100 MHz, CDCl_3) δ : 11.5, 121.4, 124.8, 124.40, 126.8, 127.9, 128.15, 130.80, 131.44, 132.89, 149.1, 159.8, 161.8, 167.9, 169.1.

Table 1 Derivatives of Isoxazole-5(4*H*)-ones in THS

Entry	Aldehyde (1 mmol)	Product	M.P (Obs.) [°] C	M.P (Theo.) [°] C	Yield %
1			96 145–146	141–143 [52]	92
2			140–142 142–144 [53]		
3			204–206 206–209 [54]	206–209 [54]	90
4			136–137 136–137	139 [55]	86
5			132–134 132–134	135–136 [56]	88
6			126–128 128–130 [26]	128–130 [26]	82

Table 1 (continued)

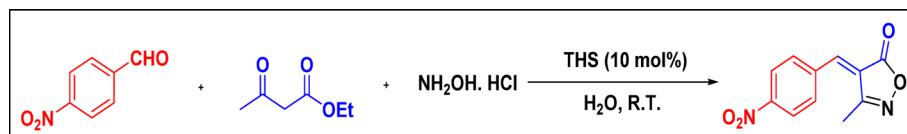
Entry	Aldehyde (1 mmol)	Product	M.P (Obs.) ^o C	M.P (Theo.) ^o C	Yield %
7			194–196	196–198 [57]	84
8			136–137	138–140 [22]	85
9			210–212	212–214 [58]	83
10			209–210	211–212 [59]	91
11			195–196	198–200 [21]	88
12			175–176	178–179 [61]	94

Reaction Condition: Aldehyde (1mmol), Ethyl aceto acetate (1mmol), Hydroxylamine hydrochloride (1mmol), H₂O (5 ml), TiHS (10 mol%), R.T.

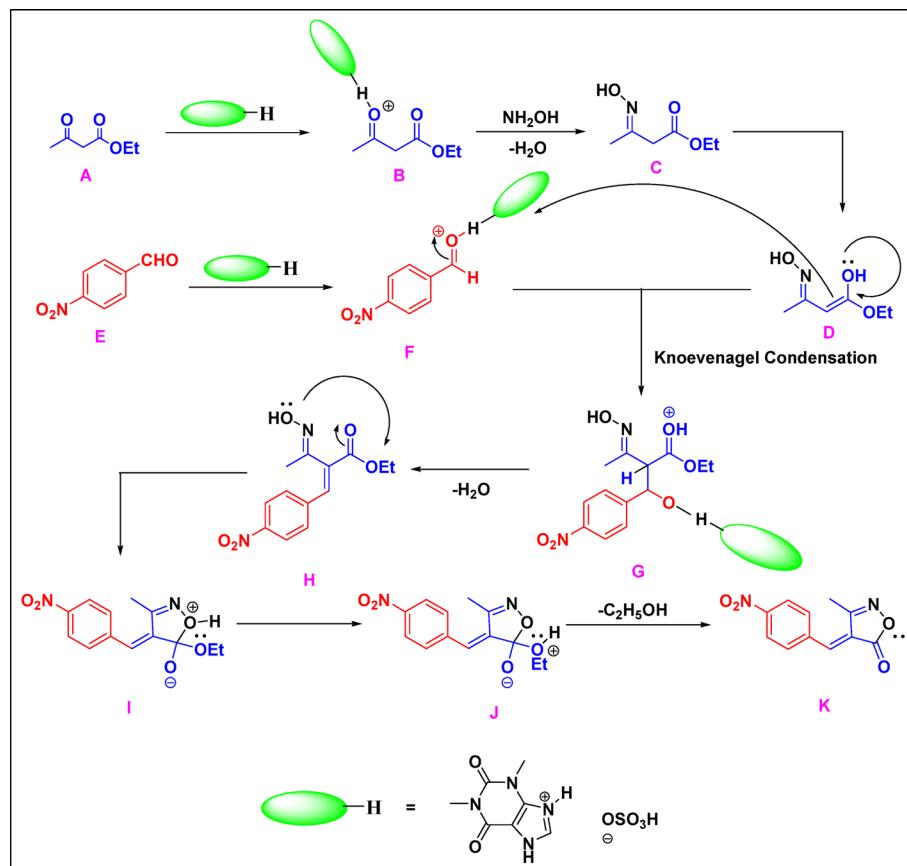
3 Result and discussion

THS is a solid acid catalyst exhibiting high solubility in water and insolubility in organic solvents, reflecting its ionic nature [50]. Its aqueous solubility makes it particularly suitable for the synthesis of Isoxazole-5(4 H)-one derivatives, which are obtained in high yields under these conditions. THS was chosen due to the well-established advantages of solid acid catalysts in one-pot multicomponent reactions. The synthesized derivatives were characterized by standard spectroscopic techniques.

To synthesize Isoxazole-5(4 H)-one derivatives, substituted aldehydes, ethyl acetoacetate, hydroxylamine hydrochloride, and THS were reacted in aqueous medium. Under optimized conditions (10 mol% THS, R.T., 25 min), the products were obtained in high to excellent yields (Scheme 1).


After that, we used the optimized conditions to perform the condensation reaction of aromatic aldehydes containing both electron-donating and electron-withdrawing groups for the synthesis of isoxazole-5(4 H)-ones, using 10 mol% THS in an aqueous medium at R.T. (Table 1).

The proposed mechanism for the synthesis of Isoxazole-5(4 H)-ones is presented in Fig. 3. The reaction begins with the activation of the carbonyl group of ethyl acetoacetate (A) by the Theophylline Hydrogen Sulfate (THS) catalyst, enhancing its electrophilicity (B). This activated species reacts with hydroxylamine to form intermediate (C), which further undergoes condensation with the activated aldehyde via a Knoevenagel reaction to give intermediate (H). Subsequent intramolecular cyclization followed by elimination of ethanol affords the target isoxazole-5(4 H)-one derivative (K). The THS catalyst thus plays a dual role, both in facilitating carbonyl activation and in promoting condensation and cyclization, leading to efficient product formation.


The primary objective of this investigation was to explore the catalytic efficiency for generating Isoxazole-5(4 H)-ones. The model reaction selected involved the interaction of aldehyde with ethyl aceto-acetate and hydroxyl amine hydrochloride (refer to Table 2). After 5 h. of reflux and R.T. stirring of the reaction mixture in water, a trace quantity of product had been generated (Table 2, Entries 1, 2). However, employing 5 mol% THS at R.T. in water and also in Ethanol: Water resulted in a 76–80% yield of the desired product (Table 2, Entries 3, 4).

To optimize reaction conditions, several experiments were conducted, exploring different solvents, temperatures, and catalyst. Various solvents such as water, methanol, ethanol, ethanol: water, were examined (Table 2, Entries 5–7). Notably, the use of water as the solvent system yielded a significantly high product yield (Table 2, Entry 8). In contrast, other solvents, including ethanol: water, ethanol, methanol, provided lesser yields than Water (Table 2, Entries 1–7, and 9).

The suitability of the aqueous medium for this transformation was confirmed. Subsequently, catalyst loading at different temperatures, including R.T., and reflux, was examined. The results revealed that a 10% loading of THS was optimal for this reaction.

Scheme 1 THS mediated synthesis of Isoxazole-5(4 H)-ones

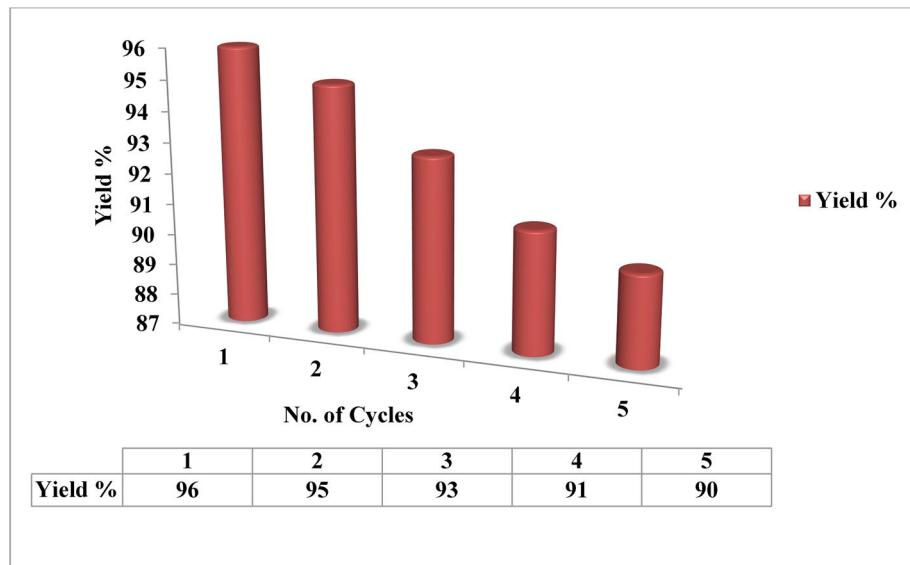


Fig. 3 A plausible reaction mechanism for the synthesis of Isoxazole-5(4 H)-ones catalyzed by Theophylline Hydrogen Sulfate (THS) in aqueous medium

Table 2 Screening of parameters for the synthesis of Isoxazole-5(4 H)-ones

Entry	THS (mol %)	Solvent/conditions	Time	Isolated yields (%)	
				THS (10 mol%)	H ₂ O, R.T.
1.	Catalyst free	Water, r. t	5 h	Trace	
2.	Catalyst free	Water, reflux	5 h	Trace	
3.	5 mol %	Ethanol: Water, r. t	2.8 h	76	
4.	5 mol %	Water, r. t	2 h	80	
5.	10 mol %	Ethanol: Water, r. t	35 min	90	
6.	10 mol %	Ethanol	40 min	86	
7.	10 mol %	Methanol	1 h	84	
8.	10 mol %	Water, r. t	25 min	96	
9.	15 mol %	Water, r. t	28 min	92	

Reaction Condition: Aldehyde (1mmol), Ethyl aceto acetate (1mmol), Hydroxylamine hydrochloride (1mmol), H₂O (5 ml), THS (10 mol%), r. t (Room temperature)

Fig. 4 Recyclability of Theophylline Hydrogen Sulfate (THS)

Table 3 A comparative study with reported reaction conditions

Sr. no.	Catalyst	Solvent/condition	Time (min)	Yield %	Reference
1.	Lemon Juice	H ₂ O: EtOH (9:1), 90 °C	50–60	90–98	[61]
2.	NH ₂ -MMT	H ₂ O, 30 °C	10–50	80–97	[62]
3.	Nano-MMT-Sn	H ₂ O, 30 °C	20	96	[63]
4.	Visible light	sodium acetate in aqueous ethanol, hν	5–10	56–89	[64]
5.	Antimony trichloride	H ₂ O, r. t	120	90	[65]
6.	PDAN-Ni@Fe ₃ O ₄	H ₂ O, 50 °C	25	95	[66]
7.	Sulfated polyborate	Solvent free, 80 °C	15	90	[67]
8.	NaHSO ₄ /SiO ₂	Toluene	50	94	[68]
8.	THS	H ₂ O, r. t	25	96	Present work

Reducing to 5 mol% or increasing to 15 mol% did not significantly enhance the product yield (Table 2, Entries 4 and 9).

3.1 Recyclability of catalyst

The recyclability of the THS catalyst was evaluated under the optimized reaction conditions. After each cycle, the catalyst was separated from the reaction mixture by simple filtration. To remove any adsorbed organic impurities, the filtrate was extracted with ethyl acetate, and the aqueous layer containing THS was concentrated for reuse [50]. As shown in Fig. 4, the catalyst could be reused for five consecutive cycles with only a slight decrease in yield (from 96% in the first cycle to 90% in the fifth cycle). This demonstrates the high stability, cost-effectiveness, and environmental friendliness of THS for isoxazole synthesis.

In this study, we have comparatively studied the impact of THS as a catalyst with previously documented catalysts in the synthesis of Isoxazole-5(4*H*)-ones derivatives, with the outcomes presented in Table 3. Moreover, Solid acid catalyst in aqueous medium, this procedure presents environmentally friendly advantages compared to methods conducted in organic solvents. This heterocycle formation reaction is favored for several reasons, including relatively shorter reaction times, higher yield, increased efficiency,

and straightforward workup procedures, strongly indicate that THS serves as a competent and sustainable acid catalyst for this methodology.

4 Conclusion

In conclusion, we have successfully developed an efficient and environmentally sustainable method for the synthesis of Isoxazole-5(4 H)-one derivatives using THS as a reusable solid acid catalyst. The catalyst not only demonstrated excellent activity and high product yields but also offered operational simplicity, as it can be easily recovered by simple filtration without the need for column chromatography. Additionally, the use of water as a reaction medium, mild conditions, and the recyclability of THS make this protocol a cost-effective and eco-friendly alternative compared to conventional methods. Therefore, this green approach has strong potential for wider application in sustainable organic synthesis and could serve as a viable strategy for large-scale industrial processes.

Supplementary Information

The online version contains supplementary material available at <https://doi.org/10.1007/s44371-025-00438-y>.

Supplementary material 1.

Acknowledgements

One of the authors, Nilam Dhane, gratefully acknowledges Rajarshi Chhatrapati Shahu College, Kolhapur, for providing laboratory facilities.

Author contributions

Nilam S. Dhane: Conceptualization and collection of information and writing the manuscript.Rohit G. Patil: Collection of information, interpretation of the result.Nilesh T. Pandit: helped to interpret the data. Surekha N. Jadhav: Collection of Information, Interpretation of the resultSamadhan P. Pawar: helped to interpret the data.Pravina B. Piste: Supervision of the research.Santosh B. Kamble: Supervision, Design and implementation of the research. Kishor V. Gaikwad: Supervision, design and implementation of the research.

Funding

No funding was received to assist with the preparation of this manuscript.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent for participate

This study did not involve any experiments on humans or animals. Therefore, ethical approval was not required. Not applicable, as the study does not involve human participants.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 7 September 2025 / Accepted: 15 December 2025

Published online: 26 December 2025

References

1. Maleki B, Raei M, Alinezhad H, Tayebee R, Sedrpoushan A. Chemoselective synthesis of tetraketones in water catalyzed by nanostructured diphosphate $\text{Na}_2\text{CaP}_2\text{O}_7$. *Org Prep Proced Int*. 2018;50(3):288. <https://doi.org/10.1080/00304948.2018.1462055>.
2. Maleki B, Chahkandi M, Tayebee R, Kahrobaei S, Alinezhad H, Hemmati S. Synthesis and characterization of nanocrystalline hydroxyapatite and its catalytic behavior towards synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in water. *Appl Organomet Chem*. 2019;13(10):e5118. <https://doi.org/10.1002/aoc.5118>.

3. Dhane NS, Sapkal A, Dhumal P, Gaikwad D, Kamble S, Gaikwad KV. An efficient and environmental friendly synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione in aqueous hydrotropic medium. *J Chem Sci.* 2024;136(4):77. <https://doi.org/10.1007/s12039-024-02310-5>.
4. Sapkal AC, Attar SR, Dhane NS, Pandit NT, Kamble SB. Green and eco- compatible synthesis of Quinoxaline molecules using Chitosan as a biodegradable catalyst in aqueous hydrotropic medium. *Tetrahedron.* 2025;173:134456. <https://doi.org/10.1016/j.tet.2025.134456>.
5. Dhane NS, Sapkal A, Attar S, Dhumal S, Chougule G, Pawar S, Kamble S, Gaikwad K. Synthesis of 1,8-dioxodecahydroacridines via Hantzsch condensation using Theophylline in an aqueous medium: an eco-friendly and bio-based approach. *Res Chem Intermed.* 2024;50(3):1147. <https://doi.org/10.1007/s11164-023-05213-1>.
6. Gaikwad DN, Gaikwad ST, Manjul RK, Rajbhoj AS, Suryavanshi DM, Varade GA, Dhane NS. A comprehensive overview of recent trends in the production of nitrogen-containing heterocyclic compounds using nanocatalysts. *Lett Org Chem.* 2024;22(2):1570. <https://doi.org/10.2174/0115701786307065240527172814>.
7. Gaikwad DN, Gaikwad ST, Manjul RK, Suryavanshi DM, Rajbhoj AS, Bankar SR, Shinde ST, Dhane NS. Magnetite-supported Salicylic acid ($\text{Fe}_3\text{O}_4@\text{SA}$) as a magnetically separable and reusable catalyst for the synthesis of 3, 4 dihydro-pyrimidin- 2(1H)-ones/thiones and Benzylidenemalononitrile derivatives under solvent-free conditions. *Iran J Catal.* 2024;14(3):142428. <https://doi.org/10.57647/jjc.2024.1403.28>.
8. Maleki B. Green synthesis of bis-Coumarin and Dihydropyrano[3,2-c]chromene derivatives catalyzed by o-Benzenedisulfonimide. *Org Prer Proced Int.* 2016;48(3):303.
9. Maleki B. Synthesis and characterization of Nanorod magnetic Co-Fe mixed oxides and its catalytic behavior towards one-pot synthesis of polysubstituted pyridine derivatives. *Polycycl Arom Chem.* 2020;40(3):633. <https://doi.org/10.1080/10406638.2018.1469519>.
10. Dhane NS, Attar SR, Sapkal AC, Kamble SB, Gaikwad KV. Ultra-probe sonication assisted greener approach in aqueous hydrotropic media for the synthesis of Pyranopyrazole derivatives. *Res Chem Intermed.* 2024;50(11):5557. <https://doi.org/10.1007/s11164-024-05390-7>.
11. Attar SR, Sapkal AC, Dhane NS, Kamble SB. Agar supported NiO nps: a sustainable approach for synthesis of 3,4-dihydropyrimidin-2 (1H)-Ones in aqueous hydrotropic media. *Catal Lett.* 2023;154(3):1160.
12. Gaikwad KV, Gaikwad SV, Jadhav SB, Rathod SD. Synthesis of some novel Chalcones of phthalimidoester possessing good antiinflammatory and antimicrobial activity. *Indian J Chem.* 2009;49(1):131.
13. Jadhav SB, Shastri RA, Gaikwad KV, Gaikwad SV. synthesis and antimicrobial studies of some novel pyrazoline and isoxazoline derivatives. *E J Chem.* 2009;6(S1):S183. <https://doi.org/10.1155/2009/361564>.
14. Galenko AV, Khlebnikov AF, Novikov MS, Pakalnis VV, Rostovskii NV. Recent advances in isoxazole chemistry. *Russ Chem Rev.* 2015;84(4):335. <https://doi.org/10.1070/RCR4503>.
15. Shanshak M, Budagumpi S, Maleki JG, Keri RS. Green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using $\text{ZnO}@\text{Fe}_3\text{O}_4$ core-shell nanocatalyst in water. *Appl Organomet Chem.* 2020;34(4):e5544. <https://doi.org/10.1002/aoc.5544>.
16. Aret E, Meekes H, Vlieg E, Deroover G. Polymorphic behavior of a yellow isoxazolone dye. *Dyes Pigment.* 2007;72(3):339. <https://doi.org/10.1016/j.dyepig.2005.09.018>.
17. Jie H, Hui G, Xiao-Guang W, Mei-Li P, Ji-Ben M. Synthesis and liquid crystalline properties of 3-substituted pentane-2,4-dione, pyrazole and isoxazole derivatives. *Chin J Chem.* 2007;25(1):129. <https://doi.org/10.1002/cjoc.200790007>.
18. Zhang X-H. Merocyanine dyes containing an isoxazolone nucleus: Synthesis, X-ray crystal structures, spectroscopic properties and DFT studies. *Dyes Pigment.* 2012;93(1–3):1408. <https://doi.org/10.1016/j.dyepig.2011.10.003>.
19. Gadkari YU, Jadhav NL, Hatvate NT, Telvekar VN. Concentrated solar radiation aided green approach for preparative scale and solvent-free synthesis of 3-Methyl-4-(hetero)aryl methylene Isoxazole-5(4H)-ones. *Chem Sel.* 2020;5(39):12320. <https://doi.org/10.1002/slct.202003348>.
20. Hatvate NT, Ghodse SM. One-pot three-component synthesis of isoxazole using ZSM-5 as a heterogeneous catalyst. *Synth Commun.* 2020;50(23):3676. <https://doi.org/10.1080/00397911.2020.1815786>.
21. Ghorbani F. Facile and expedient synthesis of α,β -unsaturated isoxazol-5(4H)-ones under mild conditions. *Res Chem Intermed.* 2020;46(1):943. <https://doi.org/10.1007/s11164-019-03999-7>.
22. Saleh FT, Ahmed MZ, Netankar PD, Ahad A, Asema UK. An efficient synthesis of isoxazoles promoted by hexamine as an efficient organocatalyst. *J Basic Sci.* 2022;22(5):11. <https://doi.org/10.1016/j.jscenv.2024.100070>.
23. Atharifar H, Keivanloo A, Maleki B. Greener synthesis of 3,4-Disubstituted Isoxazole-5(4H)-ones in a deep eutectic solvent. *Org Prer Proced Int.* 2020;52(6):517. <https://doi.org/10.1080/00304948.2020.1799672>.
24. Ferouani G, Ameur N, Bachir R. Preparation and characterization of supported bimetallic gold–iron nanoparticles, and its potential for heterogeneous catalysis. *Res Chem Intermed.* 2020;46(2):1373. <https://doi.org/10.1007/s11164-019-04039-0>.
25. Deshmukh SR, Nalkar AS, Thopate SR. Pyruvic acid-catalyzed one-pot three-component green synthesis of isoxazoles in aqueous medium: a comparable study of conventional heating versus ultra-sonication. *J Chem Sci.* 2022;134(1):15. <https://doi.org/10.1007/s12039-021-02016-y>.
26. Ghogare RS, Patankar-Jain K, Momin, S, A H. A simple and efficient protocol for the synthesis of 3,4-Disubstituted Isoxazol-5(4H)-Ones catalyzed by succinic acid using water as green reaction medium. *Lett Org Chem.* 2021;18(2):83. <https://doi.org/10.2174/1570178617999200721011300>.
27. Arya GC, Kaur K, Jaitak V. Isoxazole derivatives as anticancer agent: a review on synthetic strategies, mechanism of action and SAR studies. *Eur J Med Chem.* 2021;221:113511. <https://doi.org/10.1016/ejmec.2021.113511>.
28. Aktas DA, Akinalp G, Sanli F, Yucole MA, Gambacorta N, Nicolotti O, Karatas OF, Algul O, Burmaoglu S. Design, synthesis and biological evaluation of 3,5-diaryl isoxazole derivatives as potential anticancer agents. *Bioorg Med Chem Lett.* 2020;30(19):127427. <https://doi.org/10.1016/j.bmcl.2020.127427>.
29. Sharma N, Kouser M, Chowhan, Kour BJ, Gupta M. Ag and Ce nanoparticles supported on silane-modified nitrogen-doped mesoporous carbon (Ag,Ce@SNC/A1SCA) obtained through green approach as heterogeneous catalyst towards the synthesis of 3,4-disubstituted isoxazol-5(4H)-one and polyhydroquinoline derivatives. *Mater Chem Phys.* 2023;307:128126. <https://doi.org/10.1016/j.matchemphys.2023.128126>.
30. Darougehzhadeh Z, Kiyani H. Arylideneisoxazole-5(4H)-One synthesis by organocatalytic three-component hetero-cyclization. *Polycycl Aromat Compd.* 2023;44(5):3200. <https://doi.org/10.1080/10406638.2023.2231602>.

31. Zadem A, Cheraiet Z, Chahra B-H. (Betaine: citric acid: H₂O) a natural deep eutectic solvent (NaDES)-mediated efficient and green synthesis of 4-Benzylidene Isoxazol-5-one derivatives. *Polycycl Aromat Compd*. 2023;44(8):5188. <https://doi.org/10.1080/10406638.2023.2261594>.
32. Kundu T, Mitra B, Ghosh P. Eucalyptol: an efficient, unexplored, green media for transition metal free synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives and isoxazolone derivatives. *Synth Commun*. 2023;53(11):779. <https://doi.org/10.1080/00397911.2023.2197118>.
33. Alizadeh N, Kiyani H, Albadi J. Green and three-component synthesis of isoxazolones using natural sunlight and investigating their antibacterial activity. *Appl Chem*. 2023;18(67):125. <https://doi.org/10.22075/chem.2022.28043.2093>.
34. Madandar E, Behbahani FK. Green route for the synthesis of 3,4-Disubstituted Isoxazol-5(4H)-ones using Gd@Fe(CO)₃ nanocatalyst under solvent-free conditions. *Russ J Org Chem*. 2022;58(6):830. <https://doi.org/10.1134/S1070428022060112>.
35. Badiger KB, Khatavi SY, Kamanna K. Green synthesis of 3-methyl-4-(hetero)aryl methylene isoxazole-5(4H)-ones using WEOFPA/glycerol: evaluation of anticancer and electrochemical behaviour properties. *RSC Med Chem*. 2022;13(11):1367. <https://doi.org/10.1039/D2MD00191H>.
36. Kapale SS, Gadkari YU, Chaudhari HK. Lipase catalyzed one-pot synthesis of 3-Methyl-4-(Hetero) Arylmethyleneisoxazole-5(4H)-Ones under aqueous conditions. *Polycycl Aromat Compd*. 2023;43(6):4856. <https://doi.org/10.1080/10406638.2022.2096649>.
37. Ostadzadeh H, Kiyani H. Synthesis of Isoxazole-5(4 H)-ones using Citrazinic acid as an organocatalyst. *Aqueous Conditions Org Prep Proced Int*. 2023;55(6):538. <https://doi.org/10.1080/00304948.2023.2192601>.
38. Zhang D, Liu C, Ren L, Li W, Luan B, Zhang Y. Vitamin B1-catalyzed multicomponent reaction for efficient synthesis of an isoxazolone compound by using ultrasound in a water and its selective identification of metal ions. *Chem Select*. 2023;8(12):e202204658. <https://doi.org/10.1002/slct.202204658>.
39. Kiyani H, Ghorbani F. Expedited green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. *Res Chem Intermed*. 2016;42(9):6831. <https://doi.org/10.1007/s11164-016-2498-7>.
40. Kiyani H, Ghorbani F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. *Res Chem Intermed*. 2015;41(5):2653. <https://doi.org/10.1007/s11164-013-1411-x>.
41. Ahad A, Farooqui M. Access to arylmethylidene-isoxazol-5(4H)-ones and Benzyldienemalononitriles promoted by imidazole as an efficient organocatalyst. *Iranian J Org Chem*. 2016;8(1):1685.
42. Ghorbani F, Pourmousavi SA. Pistachio Peel biomass derived magnetic nanoparticles Fe₃O₄@C-SO₃H: a highly efficient catalyst for the synthesis of isoxazole-5(4H)-one, 1-amido alkyl-2- naphthol, pyran[2,3-c]pyrazole and 2,3-dihydro quinazoline-4(1H)-one derivatives. *Iranian J Catal*. 2022;12(2):139. <https://doi.org/10.30495/ijc.2022.690999>.
43. Dekamin MG, Peyman SZ. Phthalimide-N-oxyl salts: efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water. *Monatsh Chem*. 2016;147(2):445. <https://doi.org/10.1007/s00007-015-1565-x>.
44. Kalhor M, Sajjadi SM, Dadras A. Cu/TCH-pr@SBA-15 nano-composite: a new organometallic catalyst for facile three-component synthesis of 4-arylidene-isoxazolidinones. *RSC Adv*. 2020;10(46):27439. <https://doi.org/10.1039/D0RA01314E>.
45. Maddila SN, Maddila S, Zyl WEV, Jonnalagadda. Ag/SiO₂ as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones. *Res Chem Intermed*. 2016;42(3):2553. <https://doi.org/10.1007/s11164-015-2167-2>.
46. Gharehassanlou S, Kiyani H. A catalytic three-component synthesis of isoxazol-5(4H)-ones under green conditions. *Indian J Chem*. 2022;61(5):515.
47. Islam M, Bhunia S, Molla RA, Bhaumik A, Islam SM. Organic solid acid catalyst for efficient conversion of Furfuryl alcohol to biofuels. *chemistry select*. 2016;1(19):6079. <https://doi.org/10.1002/slct.201601285>.
48. Alzeer MIM, MacKenzie KJD, Keyzers RA. Porous aluminosilicate inorganic polymers (geopolymers): a new class of environmentally benign heterogeneous solid acid catalysts. *Appl Catal A*. 2016;524(25):173. <https://doi.org/10.1016/j.apcata.2016.06.024>.
49. Hu F, Szostak M. Recent developments in the synthesis and reactivity of isoxazoles: metal catalysis and beyond. *Adv Synth Catal*. 2015;357(12):2583e2614. <https://doi.org/10.1002/adsc.201500319>.
50. Pund GB, Wahul DB, Deshmukh TR, Dhumal ST, Mandave KR, Gaware SA, Farooqui M, Dobhal BS, Hebade MJ. Theophylline hydrogen sulfate: a green and efficient catalyst for synthesis of 3,3-bis(1H-indol-3-yl)indoline-2-one derivatives. *Synth Commun*. 2023;53(13):2080. <https://doi.org/10.1080/00397911.2023.2205594>.
51. Rundla HK, Shivani S, Teli S, Anu M, Jha PC, Agarwal S, Agarwal LK. Theophylline hydrogen sulfate as a highly efficient catalyst for the synthesis of Quinoxaline derivatives: exploring potential antidiabetic agents through molecular Docking. *Catal Lett*. 2025;155(7):243. <https://doi.org/10.1007/s10562-025-05077-7>.
52. Safari J, Ahmadzadeh M, Zarnegar Z. Sonoochemical synthesis of 3-methyl-4- arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. *org. Chem. Res.* 2016;2:134. <https://doi.org/10.1016/j.orgc.2016.08.018>.
53. Barkule AB, Gadkari YU, Telvekar. One-pot multicomponent synthesis of 3-Methyl-4-(Hetero)Arylmethylene Isoxazole-5(4H)-ones using guanidine hydrochloride as the catalyst under aqueous conditions. *Polycycl Aromat Chem*. 2022;42(9):5870. <https://doi.org/10.1080/10406638.2021.1959353>.
54. Rikani AB, Setamidideh D. One-pot and three-component synthesis of Isoxazol-5 (4H)-one derivatives in the presence of citric acid. *Orient J Chem*. 2016;32(3):1433. <https://doi.org/10.13005/ojc.320317>.
55. Agarwal D, Verma A, Dhanik J, Kumar V. Chemometric approach to evaluate catalytic activity of [CTAB/ 18-Crown-6]: a binary catalytic system for one pot green synthesis of 4- benzylidene-3-methylisoxazol-5(4H)-one derivatives at room temperature. *Int J Chem Stud*. 2018;6(2):3003.
56. Kalhor M, Samiei S, Mirshokraie SA. MnO₂@Zeolite-Y nanoporous: Preparation and application as a high efficient catalyst for multi-component synthesis of 4-arylidene-isoxazolidinones. *Silicon*. 2020;13(1):201. <https://doi.org/10.1007/s12633-020-00413-5>.
57. Kiyani H, Ghorbani F. Synthesis of Arylmethylidene-isoxazol-5(4H)-ones via three-component reaction in water catalyzed by sodium tetraborate. *Open J Org Chem*. 2013;1(1):5. <https://doi.org/10.12966/ojoc.04.02.2013>.
58. Liu Q, Wu R-T. Facile synthesis of 3-Methyl-4-Arylmethylene-Isoxazol-5(4H)-ones catalysed by sodium silicate in an aqueous medium. *J Chem Res*. 2011;35(10):598. <https://doi.org/10.3184/174751911X13176501108975>.

59. Vekariya RH, Patel HD. Facile, eco-friendly and one-pot synthesis of 3,4-disubstituted isoxazol-5(4H)-ones using starch solution as a reaction media. *Indian J Chem.* 2017;56B:890.
60. Liu Q, Hou X. One-pot three-component synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4 h)- ones catalyzed by sodium sulfide phosphorus, sulfur, and silicon and the related elements. 2012;187(4):448. <https://doi.org/10.1080/10426507.2011.621003>
61. Vekariya RH, Patel KD, Patel HD. Fruit juice of citrus Limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyran[2,3-c]-pyrazole derivatives. *Res Chem Intermed.* 2016;42(10):7559. <https://doi.org/10.1007/s11164-016-2553-4>.
62. Safari J, Ahmadzadeh M, Zarnegar Z. Sonochemical synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by amine-modified montmorillonite nanoclay. *Catal Commun.* 2016;86:91. <https://doi.org/10.1016/j.catcom.2016.08.018>.
63. Ahmadzadeh M, Zarnegar Z, Safari J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones using SnII-montmorillo green. *Chem Lett Rev.* 2018;11(2):78. <https://doi.org/10.1080/17518253.2018.1434564>.
64. Saikh F, Das J, Ghosh S. Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. *Tetrahedron Lett.* 2013;54(35):4679. <https://doi.org/10.1016/j.tetlet.2013.06.086>.
65. Pourmousavi SA, Fattahi HR, Ghorbani Kanaani FA, Ajloo D. A green and efficient synthesis of isoxazol-5(4H)-one derivatives in water and a DFT study. *J Iran Chem Soc.* 2018;15(2):455. <https://doi.org/10.1007/s13738-017-1246-2>.
66. Nezhad SM, Pourmousavi SA, Zare EN, Heidari G, Hosseini S, Peyvandtalab M. Magnetic poly(1,8-diaminonaphthalene)-nickel nanocatalyst for the synthesis of antioxidant and antibacterial isoxazole-5(4H)-ones derivatives silicon. 2023;9(5):e15886.
67. Patil MS, Mudaliar C, Chaturbhuj GU. Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones tetrahedron Lett. 2017;58(33):3256. <https://doi.org/10.1016/j.tetlet.2017.07.019>
68. Itoh KJ, Hayakawa M, Abe R, Takahashi S, Hasegawa K, Aoyama T. A facile approach to the synthesis of 3-acylisoxazole derivatives with reusable solid acid catalysts synthesis. 2021;53(24):4636. <https://doi.org/10.1055/a-1581-0235>

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.