

Impact of Climate Change on Indian Agriculture

Dr. B. B. Ghurake

Assistant Professor, Department of Geography

Rajarshi Chhatrapati Shahu College, Kolhapur (MAH, INDIA)

Article Info	ABSTRACT
<p>Article History: Received: 26th Sep 2025 Accepted: 10th Oct 2025 Published: 25th Oct 2025</p> <p>Keywords: Climate change, crop yields, monsoon variability, food security, vulnerability</p>	<p>Climate change poses a complex and multi-dimensional threat to agriculture worldwide, and India with its large agrarian population, varied agro-climatic zones, and dependence on monsoon rainfall is especially vulnerable. This paper reviews observed and projected climate changes relevant to Indian agriculture, synthesizes empirical evidence on impacts to major crops and farming systems, outlines methodological approaches used to quantify effects, analyses adaptation options and barriers, and offers policy-relevant conclusions and recommendations. Drawing on national assessments, international synthesis reports, and recent peer-reviewed studies, the paper finds that rising temperatures, shifting monsoon patterns, increased frequency of extremes (heatwaves, floods, droughts), and secondary stresses (pests, soil degradation, water stress) are already affecting yields, farm incomes, and food security. Without accelerated adaptation and mitigation, projected warming will further reduce yields for key staples; however, targeted interventions improved varieties, agronomic adjustments, climate services, water management, and social protection can substantially reduce vulnerability.</p>

Plagiarism Check Report:

Tool Used: Turnitin

Date of Report: Oct 09, 2025

Similarity Index: 9%

Remarks: No significant matching text. All citations and matches are properly referenced. The manuscript is considered original.

Copyright © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, (<http://creativecommons.org/licenses/by/4.0/>) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to Cite: Ghurake, B. B. (2025). Impact of Climate Change on Indian Agriculture. IIP: International Multidisciplinary Research Journal (IIPIMRJ), 2(IV), 637–644.

1. Introduction:

Agriculture is central to India's economy, livelihoods, and food security. Nearly half of India's geographical area is used for agriculture and a significant share of the population depends directly on farming and allied activities for sustenance and income. Climate is a primary determinant of agricultural productivity — affecting the length of growing seasons, the availability of water, pest and disease dynamics, and post-harvest losses. In the last century, India has experienced measurable warming and increasing climate variability; these changes interact with socio-economic factors (land use change, irrigation expansion, technological adoption) to shape agricultural outcomes. International scientific syntheses conclude that human-induced warming has already slowed growth in agricultural productivity in many mid- and low-latitude regions and that further warming will exert additional downward pressure on yields of major crops unless strong adaptation occurs. [IPCC](#)

In the Indian context, observed warming, shifting rainfall patterns and an increase in extreme events (heatwaves, erratic precipitation, intense cyclones) have manifested regionally and seasonally, producing complex impacts — smallholders in rain-fed semi-arid zones often face production losses from drought, while coastal and river-basin regions are exposed to flood risks and salinization. Governmental assessments and research studies document these trends and attempt to quantify likely yield impacts under a range of future scenarios. National-level analyses and international meta-analyses are consistent in showing negative yield responses for staple crops with each degree Celsius of warming, though magnitudes vary by crop, region, and adaptation level.

This paper systematically examines the evidence on the impact of climate change on Indian agriculture, describes data and methodological approaches used in empirical studies, synthesizes key findings on crop and regional vulnerability, and discusses adaptation pathways and policy implications.

2. Objectives

The main objectives of this paper are:

1. To synthesize observed climate changes in India and their direct and indirect impacts on agriculture.
2. To review empirical evidence and model-based projections of crop yield responses to warming and rainfall variability in India.
3. To describe common data sources and methodologies used to assess climate impacts on Indian agriculture.
4. To analyze adaptation options, technology and policy measures that can reduce vulnerability and support resilience.
5. To offer evidence-based conclusions and policy recommendations for researchers, planners, and practitioners.

3. Database and Methodology

3.1 Data Sources:

This study is a synthetic review and conceptual analysis that draws on: (a) international assessment reports (IPCC Sixth Assessment — WGII); (b) national climate assessment and ministry reports (Ministry of Earth Sciences, Government of India); (c) dedicated reports from national science agencies and research institutions (Department of Science & Technology syntheses on climate and agriculture); (d) recent peer-reviewed empirical studies and meta-analyses quantifying crop yield responses to warming and extremes; and (e) documented adaptation and technology case studies, including agritech interventions reported in the media and industry analyses. Key documents consulted include IPCC WGII assessments, MoES climate assessment reports, DST thematic reports on climate and agriculture, and several recent peer-reviewed studies synthesizing crop responses.

3.2 Methodological Approach of the Paper

Because this is a literature-based research paper (secondary research), the methodological approach includes:

- **Systematic literature collation:** Selection of authoritative sources (global syntheses, national assessments, peer-reviewed articles) focusing on observed changes, projection studies, crop modeling, and adaptation evaluations.
- **Comparative synthesis:** Cross-comparing projections and empirical estimates from different studies to identify consistent patterns, uncertainties, and ranges of projected impacts for key crops (rice, wheat, maize, pulses, oilseeds).
- **Analytical framing:** Interpreting results through an agro-ecological and socio-economic lens distinguishing between biophysical impacts (temperature, precipitation, CO₂ fertilization, extremes) and socio-economic interactions (irrigation, input use, market responses, policy).
- **Policy and adaptation assessment:** Summarizing adaptation measures documented in the literature and evaluating evidence of effectiveness and constraints.

3.3 Typical Methods in Empirical Studies (reviewed)

Empirical and projection studies reviewed commonly use one or more of the following methods:

- **Statistical (econometric) analyses:** Panel regressions linking weather variables (temperature, rainfall, growing degree days, extreme indices) to observed yield or production data over time and space.
- **Crop simulation models:** Process-based models (e.g., DSSAT, APSIM) forced with historical and climate model scenarios (RCPs/SSPs) to project yields under different warming scenarios and management/adaptation options.

- **Meta-analyses and synthesis:** Aggregations across many modeling and experimental results to estimate average sensitivities (e.g., percent yield change per °C).
- **Integrated assessments:** Coupling crop models with economic models or conducting risk assessments that incorporate farm-level heterogeneity, market feedbacks, and adaptation costs.

Each approach has trade-offs: statistical models use observed variability (and thus capture real-world adaptation implicitly) but can be limited by data quality; crop models are mechanistic and can explore novel futures, but are sensitive to parameterization and do not automatically capture farmer behavioral changes.

4. Data Analysis :

4.1 Observed Climate Trends in India:

National analyses indicate that India has experienced significant warming over the last century. Surface air temperatures across many regions of India have risen (for example, assessments note roughly ~0.7°C increase during 1901–2018), accompanied by shifts in rainfall patterns and an increased frequency of climatic extremes (heatwaves, intense rainfall events, variability in monsoon onset and withdrawal). These changes are not uniform across India highland zones and northern latitudes show different patterns than peninsular and coastal zones.

4.2 Direct Impacts on Crop Yields and Production:

A growing body of evidence documents negative yield responses for core staples with rising mean temperatures and increased heat extremes. Recent meta-analyses and modeling studies indicate per-degree yield penalties: for example, global syntheses and a recent multi-model meta-analysis report yield reductions per 1°C warming on the order of a few percent for rice and wheat, with maize and other crops sometimes exhibiting larger sensitivities. One recent multi-study analysis estimated yield loss rates (per °C) for major crops—maize and wheat tend to show higher sensitivity, while rice and soybean show notable but variable sensitivities depending on region and management. These yield penalties are compounded by extreme events (heat during grain-filling, untimely heavy rains causing lodging or flooding, and droughts affecting critical growth stages).

Indian-specific projection studies (using crop models and econometric analyses) estimate varied outcomes depending on scenario and adaptation assumptions: some studies report moderate declines (single-digit percent) in yields for certain crops in near-term horizons (2030–2050) under moderate warming, and larger declines by the end of the century under high-emissions scenarios without adaptation. The spatial heterogeneity is important: rain-fed regions in central and western India and parts of the south are particularly vulnerable to drought-driven yield losses, whereas some cooler highland or northern fringe areas may see short-term benefits

from a warmer season (shift in cropping windows), but these potential benefits are limited and often offset by increased extremes and water stress.

4.3 Water Availability and Monsoon Variability:

Water is a key transmission channel of climate impacts. Monsoon rainfall variability changes in timing, spatial distribution, and intensity — affects sowing windows, soil moisture recharge, and irrigation demand. Groundwater depletion in many parts of India reduces buffer capacity, making farmers more sensitive to shorter dry spells and intra-seasonal variability. The combination of reduced recharge and increased evapotranspiration under higher temperatures increases irrigation demand while reducing water availability in stressed basins, exacerbating vulnerability. National policy reports and scientific literature highlight these dual pressures on water resources and the agricultural water budget.

4.4 Pests, Diseases, and Post-harvest Losses:

Warmer temperatures and changing humidity regimes alter pest and disease phenology, potentially increasing incidence and geographic range for many crop pests and pathogens. Post-harvest temperatures and humidity also influence storage losses. These indirect impacts increase production risk and can erode farmer returns even in years without substantial yield declines from climatic stress.

4.5 Economic and Social Dimensions: Smallholders and Food Security:

Small and marginal farmers who represent a large share of India's farm population — have limited capacity to absorb shocks and less access to capital, insurance, and technological solutions. Climate-driven yield variability translates into income insecurity, migration pressures, and amplified rural poverty risks in the absence of robust social protection and market access. Reports from farmer organizations and government programs underscore the inequitable distribution of climate impacts and the need for targeted policy responses.

4.6 Adaptation and Technological Responses — Evidence of Effectiveness

There is growing evidence that targeted adaptation measures can mitigate a substantial portion of projected yield losses. Examples include adoption of heat- and drought-tolerant varieties, improved agronomic practices (adjusted planting dates, staggered planting, and conservation agriculture), expansion of micro-irrigation, integrated pest management, and the use of weather and advisory services powered by satellite and agri-data platforms. Recent reportage and case studies show that satellite-driven advisories and data-driven farm planning have improved sowing decisions, input use efficiency, and, in some cases, farmer incomes demonstrating the potential of agritech combined with institutional support.

5. Findings :

- Observed Warming and Extremes Are Already Affecting Agriculture:** India has experienced warming and intensifying extremes that are materially impacting cropping systems through heat stress, altered rainfall patterns, and increased incidence of floods and droughts.
- Staple Crops Face Net Negative Yield Responses to Warming:** Empirical evidence and model projections indicate net yield penalties for major staples (rice, wheat, maize) per degree Celsius of warming; meta-analyses show consistent negative effects, particularly for maize and wheat. These impacts are context-dependent and tempered by CO₂ fertilization in some models but often outweighed by temperature extremes and water stress.
- Regional Heterogeneity and Vulnerable Systems:** Rain-fed semi-arid regions and smallholder systems are most vulnerable due to reliance on monsoon rainfall and limited access to irrigation and credit. River basins with heavy groundwater extraction face compounded risks from warming-driven evapotranspiration increases.
- Adaptation Works — But Scaling Is the Challenge:** Agronomic interventions, improved varieties, water-efficient technologies, climate services, and policy supports (credit, insurance, extension) demonstrably reduce vulnerability when accessible. The key constraint is up-scaling these measures equitably and ensuring they reach smallholders.

6. Conclusions and Policy Recommendations

6.1 Conclusions :

Climate change constitutes a clear and present challenge to India's agriculture. Rising mean temperatures, altered precipitation regimes, and increasing frequency and intensity of extreme weather events are already reducing agricultural resilience and, in some regions, depressing yields. Although technological progress and adaptive behavior have historically increased productivity, continued warming especially under high-emission pathways — threatens to slow or reverse gains, increase yield volatility, and exacerbate socio-economic inequities among farming households. However, the literature also indicates that a portfolio of adaptation strategies, combined with mitigation and supportive policy measures, can substantially reduce vulnerability and help stabilize production and livelihoods.

6.2 Policy Recommendations:

- Scale Climate-Smart Agriculture (CSA) Practices:** Promote context-specific CSA packages that combine improved varieties, conservation agriculture, precision nutrient management, and micro-irrigation. Prioritize demonstration and farmer-to-farmer extension to accelerate uptake.

2. **Strengthen Agro-Meteorological Services and Early Warnings:** Invest in localized weather forecasting, agri-advisory systems using satellite and remote-sensing data, and timely dissemination channels (SMS, apps, community radios). Strengthen capacity of state agriculture departments to translate forecasts into actionable advisories.
3. **Water Resource Management:** Prioritize recharge, watershed management, efficient irrigation (drip, sprinklers), and reforms in groundwater governance to ensure long-term water security for agriculture.
4. **Research and Seed Systems:** Accelerate breeding and dissemination of heat- and drought-tolerant crop varieties and invest in participatory varietal selection to ensure local suitability. Enhance seed systems for rapid multiplication and access.
5. **Social Protection and Risk Management:** Strengthen crop insurance schemes, design climate-responsive safety nets, and improve market access and price support mechanisms to buffer income shocks.
6. **Infrastructure and Post-Harvest Management:** Expand cold chains, storage, and market infrastructure to reduce post-harvest losses aggravated by higher temperatures and extreme events.
7. **Integrate Climate in Agricultural Planning:** Mainstream climate risk assessments into agricultural policy, investment planning, and budgetary allocations at national and state levels.
8. **Support Smallholders and Women Farmers:** Target subsidies, credit, training, and extension services to small and marginal farmers and women, who are disproportionately vulnerable.
9. **Foster Agritech and Finance Innovation:** Encourage public-private partnerships for satellite-based advisories, index insurance products, climate-smart credit, and digital marketplaces that make resilience-enhancing tools affordable and scalable.

References and Bibliography:

1. IPCC, 2022. *Climate Change 2022: Impacts, Adaptation and Vulnerability. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (AR6 WGII)*. Cambridge University Press. (See Chapter 5: Food, Fibre and Other Ecosystem Products). [IPCC](#)
2. IPCC, 2022. *Climate Change 2022: Impacts, Adaptation and Vulnerability — Asia chapter* (Regional assessment relevant to India). [IPCC](#)
3. Ministry of Earth Sciences (MoES), Government of India. *Assessment of Climate Change over the Indian Region*. (Including national assessment summaries and observed trends). Published materials and assessment reports (see MoES PDFs and summary reports). moes.gov.in+1

4. Department of Science & Technology (DST), Government of India. *Climate Change and Agriculture in India*. (Technical report summarizing vulnerabilities, impacts and research priorities). (PDF). [Department of Science and Technology](#)
5. Recent meta-analysis (2025). *Climate change impacts on crop yields across temperature rise* — peer-reviewed synthesis finding per-degree yield loss estimates for major crops (maize, wheat, rice, soybean). (Nature / Scientific Reports article). [Nature](#)
6. NITI Aayog. *A New Paradigm for Indian Agriculture — From Agro-industry to Agroecology* and related agricultural transformation documents; NITI Aayog's portals on agricultural technology and climate-related dashboards (ICED). [NITI AAYOGICED](#)
7. Reuters, 2024. *Space data fuels India's farming innovation drive*. Coverage of satellite and agritech applications improving farmer decision-making and productivity — example of adaptation technology scaling. [Reuters](#)
8. Times of India / News reports and farmer organization analyses (various 2024–2025) highlighting observed impacts and regional farmer concerns; e.g., reports on vegetable price spikes, regional farmer federation warnings and calls for policy action. [The Times of India+1](#)
9. Selected peer-reviewed regional studies, econometric analyses, and crop-modeling papers synthesizing projections for India (see Research Gate and Science Direct archives; representative studies cited in DST and IPCC reports).