ENERGY RESEARCH WILLEY

RESEARCH ARTICLE

Revised: 8 July 2022

MoS₂ nanosheets as bifunctional electrode for oxygen evolution reaction and electrochemical supercapacitor

Komal B. Pisal¹ 💿 Т Sawanta S. Mali² Laxman D. Kadam⁴

Bapuso M. Babar¹ | Sarfraj H. Mujawar¹ Chang Kook Hong²

Shrikrishna D. Sartale³

¹Department of Physics, Yashavantrao Chavan Institute of Science, Satara, India

²Polymer Energy Materials Laboratory, School of Advanced Chemical Engineering, Chonnam National University, Gwangju, South Korea

³Thin Films and Nanomaterials Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, India

⁴Department of Physics, Arts, Science and Commerce College, Ramanandnagar, Sangli, India

Correspondence

Laxman D. Kadam, Arts, Science and Commerce College, Ramanandnagar, Sangli, Maharashtra 416308, India. Email: kdlaxman_222@yahoo.co.in

Funding information

Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune (CSMNRF-2019); Yashavantrao Chavan Institute of Science, Satara (UGC-CPE, DST-FIST, RUSA (component 8), DBT-STAR schemes)

Summary

In recent years, the demand for economic multifunctional materials for oxygen evolution reaction (OER) and supercapacitors increased tremendously. The present study focuses on the synthesis of mesoporous molybdenum disulfide nanosheets using a facile and cost-effective hydrothermal technique. The influence of acidic, alkaline, and neutral pH conditions on structural, morphological, and electrochemical properties of MoS₂ has been studied in detail. The intense (0 0 2) diffraction peak evidence the growth of MoS₂ along the c axis of hexagonal crystal structure. The MoS₂ prepared in acidic pH condition exhibit less stacking of MoS₂ layers. The pH 3 MoS₂ sample possesses high specific surface area and hence affords abundant electroactive sites. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge-discharge, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results show that the high specific capacitance of 857 F/g at 5 mV/s scan rate was achieved for the MoS₂ prepared under acidic pH conditions. Further, the electrode exhibits cyclic stability of 78% even after 1000 cycles. Also, in oxygen evolution reaction, MoS₂ electrocatalyst requires an overpotential of 299 mV to deliver a current of 25 mA/cm². These results suggest that MoS₂ nanosheets can serve as a potential candidate as an electrode for OER and supercapacitors.

KEYWORDS

hydrothermal, MoS₂, OER, pH, supercapacitor

INTRODUCTION 1

Climate change and global warming are the buzzwords in the new millennium. The 19th and 20th centuries saw the unprecedented demand for fossil fuels and energy needs sky-rocketed. New market dynamics demand portable electric and electronic devices, especially in the electric mobility solutions, there is an urgent demand for reliable and sustainable high-power energy resources.

Simple principle, long cycle life, pulse power supply, and high charge propagation make the supercapacitors a leading contender for this solution and call for attention from both researchers as well as industry experts.¹ Rechargeable batteries used in day-to-day use and supercapacitors work on a similar principle with positive and negative electrodes and separators soaked in electrolytes. On account of their obvious advantages of high-power density, superior charge/discharge rates, and longer life