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Abstract:

Integral transforms have been wide use to solve various ordinary and partial
differential equations or problems in pure and applied mathematics. Wavelet Transform and
Fractional Fourier transform has many applications in signal and image processing.

This paper describes the scaling, modulation and Parseval’s theorem of Wavelet

Transform as an extension of Fractional Fourier transform.
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Introduction:

Integral Transform was
successfully used for almost 2 century
years for solving many problems in
mathematics[6]. There are many integral
transforms have been used for solving
differential equations[8]. The fractional
Fourier analysis is used for investigations
of fractal structures; which in turn are used
to analyze different physical
phenomena[2]. The ordinary Fourier
transform and related techniques have
importance in many areas of science,
engineering and technology[10]. The
Fourier transform is best mathematical tool

used in differential equations, physical

optics, signal and image processing and so
on[1,4].

The concept of wavelet started to
appeared in the literature only in the 19"
century 8" decade that used by
Morlet(1982)[3,9]. A French geophysical
engineering first introduced the idea of
wavelet transform as the mathematical tool
for signal and image processing[5]. The
wavelet transform decomposes a signal
into the representation that shows signal
details and tends as a function of time[8§].
The kernel of fractional Fourier transform
and wavelet transform are closely related
to each other so Sharma and bhosale

introduce the Wavelet transform as an
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extension of fractional Fourier Differentiation of Extended Wavelet
transform|[7]. so we are going to discuss Transform|8]:
modulation and Parseval’s theorem for
Wavelet transform as an extension of D"W(f(x))(f) d'f " W(f(x))(f)
fractional Fourier transform. [%]
Preliminaries: =W Z ChCon(§cosa
Wavelet Transform as an extension of n=0
Fractional Fourier Transform|[7]:
The Wavelet transform as the extension of ) [
fractional Fourier transform of f(x) €

Where,

E(R™) is denoted by W (f(x))(&) and
defined by,
W(f () (a,b) = W(f(x))(&)

[ee)

— f BClaf(x)eicza[(x2+fz)cosa—2xf] dx
1
Where, b = éseca, a = tanza, B =
ia
ez 1
1> CZ(X =
(2rmisina)z

eZb sin? a
cla)lal™ ’

Cla) =

2sina ’

1 .
Ciq = Qmisina) zexp (%) ,0<a< g

Testing Function Space E(R™):

An infinitely differentiable complex
valued function fon R™ belongs to E (R™)
if for each

compact set X < Sp where

Sg={y €R™|yl<pB,B >0}

Extended Wavelet Transform of

Translation [8]:
W (fx - x0))(©)
_ eiCZa[xgcosa—Zxof]W (e(ZiCzaxOCOS“)xf(x)) &
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O M2, Co =

Ch = (n— Zh)'h'

(C)™* " cos a

Scaling Property of Wavelet Transform
as an Extension of Fractional Fourier

Transform:

W (f(ax)) (&)

L[l (P2 ) | o)

a

Proof: We Know that,
W (f ()

= fBClaf(x)eicza[(x2+fz)cosa—2x§] dx

— 0o

W(f(a))(§) =
f_oooo BClaf(ax)eL'Cza[(x2+§2)cosa—2x§] dx

(2 ptre G o]
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a?-1\_ 5 .2 a-1
1- =3 )XI +& cosa—z(l—T)xrf

a ff"chlaf(x')e””K( dx’

® ic a[( 1- a:_1 x2+§2>cusa—2 1—% x&
= [ BCiaf()e (-) (-5

dx

L% By f ettt eosamns] e ()2 (]

W (f(ax)) ()
_ %W (e—icm[(azaz 1)xz —2(£= )xf]f(x)> )

Modulation of Wavelet Transform as an

Extension of Fractional Fourier
Transform:
I.

W (f (x)cosax)(§) =

=)

Proof:

W (f (x)cosax)(§) =
[ BC, e'Caal(x?+§)cosa=2x¢] £ (1) cosax dx

o iCra|(x2+E?)cosa—2x¢ eldxye-lax
7 B et 45 el ) (22227
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%{f_moo BClaeiCza[(xZ+§2)cosa—2x5]f(x)eiaxdx +

f_moo BclaeiCza[(xZ+§2)cosa—2x§]f(x)e—iaxdx }

_ %{ f BClaeiCZa[(xz+,’;2)cosa—2x(f—ﬁ)]f(x)dx

— 00

[ee)

n f BClaeicza[(xz+€2)Cosa_2x(€+ﬁ)]f(x)dX}

— 00

:%{ f BCmeiCz“’(sz'({_zgza

—o0

[(Cm 3 )cosa dx

)2)cnsa 2x(&

2l fe

N f ey o el 6t Jeosozx(en)] tezal (25 C_)]dx}
- %{e[@_) wrco) (s

- zcc'lza>

S

r2e)|

II.

W (f (x)sinax)(§é) =

%{eiczaKCzi CaZZ )Coga W(f(x)) (%’ _

)

)

dx
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Proof:

W (f (x)sinax)(§) =

f_"ooo BclaeiCZa[(xZ+,’;2)cosa—2xf]f(x)sinax dx

J‘_°° BClaeL'CZa[(x2+52)cosa—2x$]f(x) (eiax_g—iax) dic

21

% {f_moo BclaeiCza[(xZ+§2)cosa—2xf]f(x)eiaxdx _

f_oooo BclaeiCza[(xZ+§2)cosa—2xf]f(x)e—iaxdx }

[e) . a

_ f BClaeiCZO,[(xz+§2)cosa—2x(f+ﬁ)]f(x)dx}

_ %{ fcheifm[(xz+(ffﬁ)z)cusafzx(ffﬁ)]f(x)eiCza[(%*%zza)wm]dx
B fBClae c [(x (“E Z) a—Zx(&ﬁ)]f(x)eifza[(*g—{*f—)cusa]dx}
1| icre <Ca gTz> osa
= e e w (re) (¢
)
205,
(-8 )
_e? < Coa €2, ) " w(f(x)) (g

Parseval’s Theorem for Wavelet
Transform as an Extension of

Fractional Fourier Transform:

i)
I5 fagaydx =[" w(f())© w(g))@) dé
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i)
[2If@Idx = [2 w(F0) @) dé

Proof:

i) Let,

w(g())©) =

f_"’oo BCyge iCag[(x2+&2)cosa—2xE] g (x)dx
By using inverse formula,

g(x)

(0]

— fqu—icza[(xz+§'2)cosa—2xf] W(g(x))(f)d«f

|
8

p—

g(x

BClaeiCza[(x2+fz)cosa—2xf] Wdf

Il
—3

8

Now consider,

[ reoaG ax

- Jf(x) jBClaeicza[(x2+52)cosa—2xf] W(g(x))(f)dg‘ dx

f_""m W(g(x))(g‘) (f_‘x’oo BClaeiCza[(x2+§2)cosa—2x€]f(x) dx)d{
J5 feg@) dx =[5 W(f())(©) W(g(x)(©) d&
il) [ If @12 dx = [ f)f ) dx

= [ W@ W(F®))E©) d¢
= [Z W(F@)©)|" d¢

Conclusion:

This presents  scaling,

paper
modulation and Parseval’s theorem for
Wavelet transform as an extension of
fractional Fourier transform and this are
solve

useful to ordinary differential
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equations and partial differential equations

like heat equation, schrodinger’s equation

etc.
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