

Effect of Pd sensitization on gas-sensing performance of vanadium pentoxide-reduced graphene oxide composite

B. M. Babar¹, S. H. Mujawar¹, P. V. Mane², P. M. Kadam^{3,*}, P. S. Patil^{4,*}, and L. D. Kadam^{5,*}

¹ Department of Physics, Yashavantrao Chavan Institute of Science, Satara, Maharashtra 415 001, India

² School of Chemical Engineering, Chonnam National University, Buk-gu, Gwangju 61186, Republic of Korea

³ Department of Electronics, Smt. Kasturbai Walchand College, Sangli, Maharashtra 416 416, India

⁴Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur, Maharashtra 416 004, India

⁵ Arts Science and Commerce College, Ramanandnagar, Maharashtra 416 308, India

Received: 18 May 2022 Accepted: 22 July 2022 Published online: 5 August 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

ABSTRACT

Current work clearly demonstrates Pd sensitization on hydrothermally prepared vanadium pentoxide (V_2O_5) and on its composite with reduced graphene oxide (rGO) by a simple dip and dry method for NO₂ gas sensing. Orthorhombic crystal structure of prepared sample was confirmed with the help of X-Ray Diffraction (XRD) technique. The presence of palladium (Pd) was confirmed by energy-dispersive spectroscopy (EDS) and X-Ray photoelectron spectroscopy (XPS), while fourier transform infra-red (FTIR) spectroscopy for functional group detection. Porous nano-structure morphology was confirmed with the help of scanning electron microscopy (SEM). Transmission electron microscopy (TEM) technique confirms presence of Pd nanoparticles (NPs) with an average diameter of ~ 20 nm. The photoluminescence (PL) peak arising at 641.75 nm gives the confirmation to the mid-gap states generated by oxygen vacancies. Finally, the gas-sensing performance of the prepared sensing material was measured with the help of a RIGOL digital multimeter. The result shows that 33.68% gas response towards 100 ppm NO₂ gas at relatively low-working temperature (150 °C) along with considerable 47 and 592 s response/recovery time, respectively. The sensing material shows good reproducibility and high stability (Gas Response $\sim 29\%$) even after 63 days. Hence Pd sensitized V₂O₅rGO is a promising candidate for gas sensors working at relatively low working temperatures.

Address correspondence to E-mail: kprakash5229@rediffmail.com; psp_phy@unishivaji.ac.in; kdlaxman_222@yahoo.co.in