Question Bank Zoology Paper VI Biochemistry

Nucleic Acids

1.	In DNA double helix, the two DNA chains are held together by
	A. Covalent bonds between the complementary basepairs
	B. Hydrogen bonds between the complementary base pairs
	C. Ionic bonds between the complementary basepairs
	D. None of the above
2.	The 5' and 3' numbers are related to the
	A. Length of the DNA strand
	B. Carbon number in sugar
	C. The number of phosphates
	D. The base pair rule
3.	In DNA, there are
	A. Five bases known as adenine, guanine, thymine, tryptophan and cytosine
	B. Four bases known as adenine, guanine, thymine and cytosine
	C. Three bases known as adenine, guanine and cytosine
	D. Only two bases known as adenine and cytosine
4.	In DNA, guanine pairs with
	A. Adenine
	B. Cytosine
	C. Thymine
	D. Uracil
5.	Which of the following is incorrect about DNA?
	A. Two strands of the DNA are anti parallel to each other.
	B. Adenine always pairs with thymine.
	C. Guanine always pairs with the cytosine.
	D. None of the above
6.	If one cell has 40% A-T content, what will be the percentage of Guanine residue?
	A. 60%
	B. 15%
	C. 30%
	D. Guanine residue can't be calculated

7. Which of the following is the smallest of the RNAs?	
A. Messenger RNA	
B. Transfer RNAs	
C. Ribosomal RNAs	
D. All of these	
8. What is the average size of a mature t-RNA?	
A. 70 to 100 bases	
B. 100 to 120 bases	
C. 120 to 140 bases	
D. 140 to 160 bases	
9. What modified base is present at the 5' extremity of a capped eukaryotic m-RNA?	
A. 1-methyl-guanosine	
B. 3-methyl-guanosine	
C. 5-methyl-guanosine	
D. 7-methyl-guanosine	
10. What is the function of messenger RNA?	
A. It carries amino acids	
B. It is a component of the ribosomes	
C. It carries information about amino acid sequence in a protein	
D. It is the genetic material of some organisms	
11. Which of following RNA contains unusual purines and pyrimidines?	
A. rRNA	
B. tRNA	
C. mRNA	
D. None of the above	
12. The anticodon is a structure on a	
A. rRNA	
B. ribosome	
C. mRNA	
D. tRNA	
13. The genetic material of retroviruses such as HIV is	
A. DNA	
B. RNA	

C. protein

D. all of these
14. In deoxyribose sugar one oxygen atom is less at position
a. 1' carbon atom
b. 2' carbon atom
c. 3' carbon atom
d. 4' carbon atom
15. Double helical structure of DNA was explained by in 1953.
a. J. D. Watson
b. F. H. C. Crick
c. Watson & Crick
d. None of the above
16. In a double stranded DNA molecule guanineforms hydrogen bonds with cytosine
a. 1
b. 2
c. 3
d. 4
17. In a double stranded DNA molecule adenineforms hydrogen bonds with thymine.
a. 1
b. 2
c. 3
d. 4
18. In a DNA sample, there is 20% Adenine, what will be the percentage of cytosine?
a. 20 %
b. 30 %
c. 40 %
d. 60 %
19. In a DNA sample, there is 30% guanine, what will be the percentage of thymine?
a. 20 %
b. 30 %
c. 40 %
d. 60 %
20. Each turn of DNA helix has a length of
a. 24 A^0
b. 28A^0

c. 34 A^0
d. 36A^0
21. Total width/diameter of DNA double helix is
a. 20 A^0
b. 10 A^0
c. $34 A^0$
d. 3.4 A^0
22. A nucleoside is formed by the combination of
a. Sugar + Nitrogenous base
b. Sugar + phosphoric acid
c. Phosphoric acid+ Nitrogenous base
d. Sugar+ nitrogenous base + phosphoric acid
23. A nucleotide is formed by the combination of
a. Sugar + Nitrogenous base
b. Sugar + phosphoric acid
c. Phosphoric acid+ Nitrogenous base
d. Sugar+ nitrogenous base + phosphoric acid
24. The bond or linkage between two sugar molecules formed by phosphate group is calledas
a. Glycosidic bond
b. Peptide bond
•
b. Peptide bond
b. Peptide bondc. Phosphodiester bond
b. Peptide bondc. Phosphodiester bondd. Ester bond
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6 d. 9
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6 d. 9 26. Attachment of a pyrimidine to carbon 1' of sugar is throughposition
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6 d. 9 26. Attachment of a pyrimidine to carbon 1' of sugar is throughposition a. 1 b. 3 c. 6
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6 d. 9 26. Attachment of a pyrimidine to carbon 1' of sugar is throughposition a. 1 b. 3
 b. Peptide bond c. Phosphodiester bond d. Ester bond 25. The attachment of purine base to the carbon 1' of the sugar is through position a. 1 b. 3 c. 6 d. 9 26. Attachment of a pyrimidine to carbon 1' of sugar is throughposition a. 1 b. 3 c. 6

	b. Adenine
	c. Cytosine
	d. Thymine
28	. Ribose sugar is a
	a. Triose
	b. Tetrose
	c. Pentose
	d. Hexose
	Carbohydrate Metabolism
1.	What is glycolysis?
1.	A. Utilization of glucose
	B. synthesis of glucose
	C. synthesis of glycogen
	D. breakdown of glycogen
2.	Which of the following is the first enzyme of glycolysis?
2.	A. Pyruvate dehydrogenase
	B. Phosphofructokinase
	C. Hexokinase
	D. None of the above
3.	Which enzyme converts pyruvate to lactate?
٥.	A. Pyruvate kinase
	B. Pyruvate dehydrogenase
	C. Pyruvate carboxylase
	D. Enolase
4.	Which hormone stimulates glycolysis?
	A. Insulin
	B. Glucagon
	C. Growth hormone
	D. All of the above
5.	Which hormone inhibits glycolysis?
	A. Insulin

	D. Cl
	B. Glucagon
	C. Growth hormone
	D. All of the above
6.	Glycolysis is also known as?
	A. Kreb's cycle
	B. Respiratory cycle
	C. Embden Meyerhof pathway
	D. HMP-shunt
7.	Which process shares the same pathway as glycolysis but in opposite direction?
	A. Glycogenesis
	B. Gluconeogenesis
	C. Glycogenolysis
	D. HMP-shunt
8.	Which of the following statement is NOT true about glycolysis?
	A. It occurs in cytoplasm of the cell
	B. It also helps in fructose metabolism
	C. Glycolysis generates ATP
	D. Glycolysis generates CO ₂
9.	Which of the following enzymes participate in first phase of glycolysis?
	A. Hexokinase
	B. Phospho-fructokinase
	C. Aldolase
	D. All of the above
10.	Hexokinase is — dependent enzyme.
	A. Zinc
	B. Magnesium
	C. sodium dependent
	D. Iron
11.	TCA cycle is also known as?
	A. Citric acid cycle
	B. Kreb's cycle
	C. Both
	D. None

12.	Which is the first compound formed in the TCA cycle?				
	A. Oxaloacetate				
	B. Citrate				
	C. Isocitrate				
	D. None of the above				
13.	The TCA cycle occurs in?				
	A. Mitochondrial matrix				
	B. Cytosol				
	C. Nucleus				
	D. Ribosomes				
14.	Which compound generates acetyl-Co A?				
	A. Lactate				
	B. Pyruvate				
	C. Glucose				
	D. Fructose				
15.	Which enzyme catalyzes the conversion of isocitrate to alpha-ketoglutarate?				
	A. Isocitrate dehydrogenase				
	B. Isocitrate carboxylase				
	C. Alpha-ketoglutarate dehydrogenase				
	D. Aldolase				
16.	For biomolecule/s the TCA cycle is the final common oxidative pathway.				
	A. Carbohydrates				
	B. Fats				
	C. Amino acids				
	D. All of the above				
17.	Which of the following reaction requires FAD as hydrogen acceptor?				
	A. Fumaric acid to Malic acid				
	B. Succinic Co A to Succinic acid				
	C. Succinic acid to fumaric acid				
	D. None of these				
18.	Which of the following statement is NOT true about Kreb's cycle?				
	A. It occurs in mitochondria matrix of the cell				
	B. It also helps in fructose metabolism				

	C. TCA cycle generates ATP					
	D. TCA cycle generates O ₂					
19.	There is no direct participation of oxygen in the Kreb's cycle, but the cycle operates only in					
	aerobic conditions. Why?					
	A. Oxaloacetate is generated only in presence of oxygen					
	B. FAD is generated only in presence of oxygen					
	C. NAD is generated only in presence of	of oxygen				
	D. Both B and C					
20.	The process of Glycolysis occurs in					
	a. Ribosomes					
	b. Golgi complex					
	c. Cytoplasm					
	d. Mitochondria					
21.	The enzymes of TCA cycle are located	The enzymes of TCA cycle are located in				
	a. Endoplasmic Reticulum					
	b. Golgi complex					
	c. Ribosomes					
	d. Matrix of mitochondria					
22.	The formation of new glucose molecule from non-carbohydrate precursor compound is called as					
	a. Glycolysis					
	b. Glycogenesis					
	c. Gluconeogenesis					
	d. None of these					
	****	Lipid Metabolism				
1.	What is lipogenesis?					
	A. synthesis of lipid	B. catabolism of phospholipid				
	C. synthesis of fatty acids	D. catabolism of fatty acids				
2.	Which fatty acid contains 16 carbon skeleton?					
	A. Palmitic acid	B. glutamic acid				
_	C. Lauric acid	D. Myristic acid				
3.	Where does lipogenesis takes place?					
	A. cytoplasm	B. mitochondria				
	C. ribosomes	D. nucleus				

4.	In which organ, lipogenesis occur mostly?					
	A. 1	liver			B. lungs	
	C. r	mammary glan	ds		D. both A and C	
5.	Wh	ich of the follo	owing statement is NO	OT true?		
	A. 1	A. lipogenesis is same as lipolysis				
	B. f	fatty acids are s	synthesized from ace	tyl-CoA.		
	C. I	Insulin activate	es the acetyl-CoA car	boxylase	enzyme.	
	D. 0	Glucagon inhib	oits the acetyl-CoA ca	arboxylas	se enzyme.	
6.	Wh	ich type of die	t inhibits lipogenesis	?		
	Α. α	carbohydrate ri	ich		B. fat rich diet	
	C. p	protein rich die	et		D. all of the above	
7.	Hov	w many enzym	natic sites does fatty a	icid synth	nase complex have?	
	A. 8	8	B. 6	C. 7	D. 5	
8.	Wh	ich form of en	ergy is required for the	ne convei	rsion of acetyl-CoA to malonyl-CoA?	
	A. 1	NADH			B. GTP	
	C. A	AMP			D. ATP	
9.	Wh	ich of the follo	owing is correct seque	ence of re	eactions occurring on enzyme fatty acid synthase	
	con	nplex?				
	Α. α	A. condensation-reduction-dehydration-reduction-Translocation				
	В. с	B. dehydration-reduction-condensation-reduction-Translocation				
	C. reduction-condensation-dehydration-reduction-Translocation					
	D. reduction-condensation-reduction-dehydration-Translocation					
10	. Syn	nthesis of fatty	acids begins from wh	nich com	pound?	
	a.	acyl-CoA				
	b.	acetyl-CoA				
	c. phospholipid					
	d. lipoproteins					
11.	. Car	boxyl group o	of bicarbonate is tran	sferred to	o molecule of Acetyl Co A carboxylase	
	enz	yme during Ma	alonyl Co A synthesi	s.		
	a.	Biotin carrier J	protein			
	b.	Biotin Carbox	ylase			
	c.	Transcarboxyl	lase			
	А	Riotin				

12	. β oxidation takes	place in	•			
	A. cytosol		B. mitocho	B. mitochondria		
	C. ribosomes				D. nucleus	
13	. Activation of fatty	y acid for β ox	idation requir	es		
	A. NADH		B. GTP			
	C. AMP			D. ATP		
14	. Transport of fatty	acyl Co A to 1	mitochondrial	matrix for β	oxidation is brought about by?	
	A. Carnitine acyl	transferase		B. Fatty ac	B. Fatty acid synthase	
	C. Fatty acyl Co	A synthatase		D. None of the above		
15	. β oxidation is con	npleted in	steps.			
	A. 1	B. 3	C. 4		D. 7	
16	. Acetyl CoA is con	nverted into m	alonyl CoA w	ith the help o	f enzyme	
	A. Acetyl CoA s	ynthase				
	B. Acetyl CoA (Carboxylase				
	C. Acetyl CoA r	eductase				
	D. Thioestarase					
17	. How many carbon	ns are removed	l from fatty ac	cid molecule i	n each β oxidation cycle?	
	A. 1	B. 2	C. 3	D. 4		
18	. Which of the follo	owing product	is released fro	om fatty acid	during β oxidationcycle?	
	A. Acyl CoA	B. Ac	etyl CoA	C. CO ₂	D. H_2O	
			Protei	n Metabolism		
1.	In which form ammonia is disposed in the liver?					
	A. Urea					
	B. Uric acid					
	C. Bile					
	D. All of the above	ve				
2.	Urea is formed from	om which toxic	c material?			
	A. CO2					
	B. Ammonia					
	C. Uric acid					
	D. All of the above	ve .				

3. Urea cycle provides intermediate for which pathway?

	A. Glycolysis
	B. HMP-shunt
	C. TCA cycle
	D. Gluconeogenesis
4	. Where does urea cycle occur?
	A. Heart cells
	B. Liver cells
	C. Kidney cells
	D. Heart
5	From where are the two amino groups of urea derived?
	A. both derived from ammonia
	B. Both derived from aspartate
	C. One from ammonia and one from aspartate
	D. None of the above
6	Which of the following is the rate limiting step of urea cycle?
	A. Synthesis of citrulline
	B. Synthesis of carbamoyl phosphate
	C. synthesis of arginine
	D. Synthesis of ornithine
7	Which of the following is the first reaction of urea cycle?
	A. Formation of ornithine
	B. Formation of urea
	C. Formation of arginosuccinate
	D. Formation of citrulline
8	. How many ATP are required for the formation of carbamoyl phosphate?
	A. 2
	B. 3
	C. 4
	D. 1
9	. Carbamoyl phosphate donates its phosphate group to which compound to form citrulline?
	A. Arginosuccinate
	B. Ornithine
	C. Fumerate
	D. Urea

- 10. Which of the following compound/s is/are intermediate/s of urea cycle?A. ArginosuccinateB. Ornithine
 - C. Citrulline
 - D. All of the above
- 11. Which of the following is the significance of urea cycle?
 - A. Regulates BP
 - B. Regulates blood volume
 - C. Regulate blood flow
 - D. Regulate blood Ph
- 12. What enhances urea synthesis?
 - A. increased level of N-acetyl glutamate (NAG)
 - B. Decreased level of NAG
 - C. Protein rich diet
 - D. Both A and C