Total No. of Pages: 2

~	
Seat	1
No.	

M.Sc. (Part - I) (Semester - I) (NEP)

Examination, December - 2023

STATISTICS/APPLIED STATISTICS AND INFORMATICS

Estimation Theory (Paper - IV)

Sub. Code: 87866/87780

Day and Date: Monday, 04 - 12 - 2023

Total Marks: 80

Time: 10.30 a.m. to 1.30 p.m.

Question number 1 is compulsory. 1) Instructions:

Attempt any four questions from question numbers 2 to 7. 2)

Figures to the right indicate full marks. 3)

Q1) Answer the following.

 $[8 \times 2 = 16]$

- Define sufficient statistic. Obtain a sufficient statistic for the variance of an exponential distribution based on a sample of size n.
- Define bounded completeness. Give an example of a bounded compete b) family.
- State Rao Blackwell theorem. c)
- If x follows $P(\lambda)$, obtain Fisher information of λ^2 . d)
- State the invariance property of MLE. e)
- Define kernel and U-statistic for an estimable parameter. f)
- Define prior and posterior distributions. g)
- Define conjugate family of distributions. Give an example. h)
- Define one parameter exponential family of distributions. Obtain minimal Q2) a) sufficient statistic for this family. [8+8]
 - Define ancillary statistic. State and prove Basu's theorem. b)
- State and prove Lehman Scheffe theorem. Q3) a)

[8+8]

Define UMVUE. Suppose X_1, X_2, \dots, X_n are iid random variable b) from Poisson (θ) distribution. Obtain UMVUE of $e^{-\theta}$.

- Q4) a) Describe method of scoring to obtain MLE with suitable example. [8+8]
 - b) Describe method of moments. Let X_1, X_2, \dots, X_n be a sample from $G(\alpha, \beta)$ distribution. Obtain the method of moment estimator of (α, β) .
- Q5) a) Describe squared error loss functions and absolute error loss functions.

 Obtain Bayes estimator under squared error loss. [8+8]
 - b) Let X_1, X_2, \dots, X_n be a random sample from $N((\theta, 1)), \theta \in R$, distribution. The prior distribution of θ is N(0,1). Find the Bayes estimator of θ under squared error loss function.
- Q6) a) Let X_1, X_2, X_3 be a random sample from $b(1, \theta)$. Show that $X_1 + 2X_2$ is not sufficient statistic for θ . [4×4]
 - b) Let X~ Geometric (p) distribution. Obtain UMVUE of p based on a random sample of size n.
 - c) Suppose X_1, X_2, \dots, X_n is a random sample from $f_{\theta}(x) = e^{-(x-\theta)}, x \ge \theta$. Obtain MLE of θ . Is it unbiased?
 - d) Explain with examples:
 - i) non informative prior
 - ii) Jeffrey's prior.
- Q7) Write short notes on the following.

 $[4 \times 4]$

- a) Minimal sufficient partition
- b) Crammer Rao inequality
- c) Minimum chi-square estimation
- d) Bayes and minimax rules.

SL - 656 Total No. of Pages : 3

Seat No.

M.Sc. (Part - I) (Semester - I) (NEP 2020)

Examination, December - 2023

STATISTICS/ APPLIED STATISTICS AND

INFORMATICS (Paper - II)

Estimation Theory Sub. Code: 92499

Day and Date : Monday, 04 - 12 - 2023

Total Marks: 80

Time: 10.30 a.m. to 1.30 p.m.

Instructions: 1) Q

1) Question No.1 is compulsory...

- 2) Attempt any four questions from question numbers 2 to 7.
- 3) Figures to right indicate full marks.
- Q1) Answer the following.

 $[8 \times 2 = 16]$

- a) State Basu's theorem.
- b) Define curved exponential family. Give an example.
- What is the Fisher's information contained in a single observation drawn from $N(\mu,1)$ distribution?
- d) State Cramer-Rao inequality.
- e) Define degree and kernel of an estimable parameter.
- f) State the invariance property of MLE.
- g) Define CAN and BAN estimators.
- h) Is consistent estimator unique? Justify.

P.T.O.

- Q2) a) Define completeness and bounded completeness of a family of distributions. If $X_1, X_2, ..., X_n$, is a random sample from $N(\theta, \theta^2)$, then show that $T = (\sum X_i, \sum X_i^2)$ is sufficient but not complete statistic.
 - b) State Neyman's factorization theorem and prove it in case of discrete family of distributions.

[8+8]

- Q3) a) State and prove a necessary and sufficient condition for an estimator of a parametric function $\psi(\theta)$ to be UMVUE.
 - b) Define UMVUE. Suppose X_1, X_2, \dots, X_n are iid random variables from Poisson(θ) distribution. Obtain UMVUE of $e^{-\theta}$.

[8+8]

- Q4) a) Suppose X_1, X_2, \dots, X_n , is a random sample from $f_{\theta}(x) = e^{-(x-\theta)}$, $x \ge \theta, = 0$, otherwise. Obtain MLE of θ . Check whether it is unbiased.
 - b) Describe method of moments estimation. Let X_1, X_2, \dots, X_n be a sample from $G(\alpha, \beta)$ distribution. Obtain the method of moment estimator of (α, β) .

[8+8]

- Q5) a) Define weak consistency and strong consistency. Let X_1, X_2, X_n be a random sample from exponential distribution with mean θ , show that \overline{X} is consistent for θ whereas $nX_{(1)}$ is not consistent for θ .
 - b) Let X_1 , X_2 ,...... X_n , be iid random variables with PDF $f(x,\theta) = \theta x^{(\theta-1)}, 0 < x < 1, \theta > 0$. Obtain a CAN estimator for θ .

[8+8]

- Q6) a) Define one parameter exponential family of distributions. Obtain minimal sufficient statistic for this family.
 - b) Define unbiased estimator and state its properties.
 - c) Describe method of scoring.
 - d) Let $X \sim b(1, p)$. Obtain a CAN estimator of p(1 p).

 $[4\times4]$

Q7) Write short notes on the following.

 $[4\times4]$

- a) Pitman family of distributions.
- b) Chapman-Robbins-Kiefer bound.
- c) U-statistics.
- d) Methods of obtaining CAN estimators.

Seat	_
No.	

Estimation Theory

Total No. of Pages: 2

M.Sc. (Part - I) (Semester - I) (CBCS) Examination, November - 2019

STATISTICS/APPLIED STATISTICS AND INFORMATICS

Estimation Theory (Paper - IV) (Revised)

Sub. Code: 74910/74977

Day and Date : Friday, 29 - 11 - 2019

Total Marks: 80

Time: 11.00 a.m. to 02.00 p.m.

Instructions:

- 1) Question No. 1 is compulsory.
- 2) Attempt any four questions from question numbers 2 to 7.
- 3) Figures to the right indicate full marks.

Q1) Answer the following:

 $[8\times2=16]$

- a) Define minimal sufficient statistics. Let $X_1, X_2, ..., X_n$ be a random sample from b(1, p) distribution. Obtain a minimal sufficient statistics for p.
- b) Define power series distribution family. Give an example.
- c) State a necessary and sufficient condition for an unbiased estimator to be MVBUE.
- d) Define pitman family. Give an example.
- e) Define MLE.
- f) Define degree of an estimable parameter and kernel.
- g) Define loss function and Bayes risk.
- h) Define Bayes rule and state Bayes estimator under squared error loss function.
- Q2) a) State and prove Basu's theorem.
 - b) Define complete family. Show that $\{U(0, \theta), \theta > 0\}$ is a complete family.

[8 + 8 = 16]

P.T.O.

- Q3) a) State and prove Rao-Blackwell theorem.
 - b) Show that the UMVUE, if exists, is unique.

[8 + 8 = 16]

- **Q4)** a) State and prove Chapman-Robbins-Kiefer inequality.
 - b) Describe Fisher's scoring method of obtaining an MLE.

[8 + 8 = 16]

- **Q5)** a) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1), \theta \in R$, distribution. The prior distribution of θ is N(0, 1). Find the Bayes estimator of θ under absolute error loss function.
 - b) Describe method of moments estimators. Let $X_1, X_2, ..., X_n$ be a sample from N(μ , σ^2) distribution. Obtain the method of moments estimator of (μ, σ^2) .

[8 + 8 = 16]

- **Q6)** a) Show that if T_1 and T_2 are two sufficient statistics, then T_1 is a function of T_2 :
 - b) State and prove Lehmann-Scheffe theorem.
 - c) Let $X_1, X_2, ..., X_n$ be a random sample from $U\left[\theta \frac{1}{2}, \theta + \frac{1}{2}\right]$ distribution. Obtain an MLE of θ .
 - d) Let $X \sim P(\lambda)$. L(λ , d(x)) = $(\lambda d(x))^2$. The prior distribution of λ is G(α , β). Calculate the Bayes risk for d(x) = x. [4 × 4 = 16]
- Q7) Write short notes on the following.

 $[4\times 4=16]$

- a) Curved exponential family
- b) The regularity conditions of CR inequality
- c) Method of minimum chi-square
- d) U-statistic

Seat No.

Total No. of Pages: 2

M.Sc. (Part - I) (Semester - I) (CBCS) (Revised)

Examination, November - 2019

STATISTICS/APPLIED STATISTICS AND INFORMATION (Paper - IV)

Estimation Theory

Sub. Code: 68231/71448

Day and Date : Friday, 29 - 11 - 2019

Total Marks: 80

Time: 11.00 a.m. to 2.00 p.m.

Instructions:

- 1) Question No.1 is compulsory.
- 2) Attempt any four questions from question numbers 2 to 7.
- 3) Figures to the right indicate full marks.

Q1) Answer the following:

[8×2]

- a) Define Fisher information function.
- b) State invariance property of MLE.
- c) Define minimal sufficient statistic.
- d) Define minimum variance unbiased estimator.
- e) Define ancillary statistics.
- f) Define complete sufficient statistic.
- g) State Rao-Blackwell theorem.
- h) State U-statistics theorem for one sample.
- Q2) a) Describe curved exponential family.
 - b) Let $X_1, X_2,...,X_n$ be a random sample from $N(\mu, \sigma^2)$. Obtain Fisher information matrix $I_x(\mu, \sigma^2)$.
 - c) Discuss Pitman family of distributions in detail.

(4+8+4)

P.T.O.

Q3) a) State and Prove Crammer-Rao inequality stating the regularity conditions.

b) State and prove Basu's theorem.

[8+8]

Q4) a) Explain method of moment estimators. Obtain moment estimators of a and b of U(a, b) distribution based on random sample of size n.

b) Let X~ Geometric (p) distribution. Obtain UMVUE of p based on a random sample of size n.

[8+8]

Q5) a) What is meant by conjugate prior? Assuming conjugate prior for parameter θ of $N(\theta,1)$. obtain Bayes estimator for θ , under squared error loss function.

b) State and Prove Lehman-Scheffe theorem.

[8+8]

Q6) a) Describe the method of scoring for obtaining maximum likelihood estimate of a parameter function.

b) Let $X_1, X_2,.... X_n$ be a random sample from $N(\theta, \theta)$ distribution, $0 < \theta < \infty$. Obtain MLE of θ .

[8+8]

Q7) Write short notes on following:

[4×4]

- a) Bhattacharya Bounds.
- b) Bayes estimation under absolute error loss function.
- c) Conjugate prior and non informative prior.
- d) Sufficient statistic and Neyman factorization theorem.

O O O

Seat 01163

Total No. of Pages: 2

M.Sc. (Part - I) (Semester - I) (CBCS) Examination, November - 2019

STATISTICS/APPLIED STATISTICS AND INFORMATICS

Estimation Theory (Paper - IV) (Revised)

Sub. Code: 74910/74977

Day and Date: Friday, 29 - 11 - 2019

Total Marks: 80

Time: 11.00 a.m. to 02.00 p.m.

Instructions: 1) Q

- 1) Question No. 1 is compulsory.
- 2) Attempt any four questions from question numbers 2 to 7.
- 3) Figures to the right indicate full marks.

Q1) Answer the following:

 $[8 \times 2 = 16]$

- a) Define minimal sufficient statistics. Let $X_1, X_2, ..., X_n$ be a random sample from b(1, p) distribution. Obtain a minimal sufficient statistics for p.
- b) Define power series distribution family. Give an example.
- c) State a necessary and sufficient condition for an unbiased estimator to be MVBUE.
- d) Define pitman family. Give an example.
- e) Define MLE.
- f) Define degree of an estimable parameter and kernel.
- g) Define loss function and Bayes risk.
- h) Define Bayes rule and state Bayes estimator under squared error loss function.
- Q2) a) State and prove Basu's theorem.
 - b) Define complete family. Show that $\{U(0, \theta), \theta > 0\}$ is a complete family.

[8 + 8 = 16]

Scanned with CamScanner

- Q3) a) State and prove Rao-Blackwell theorem.
 - b) Show that the UMVUE, if exists, is unique.

$$18 + 8 = 161$$

- Q4) a) State and prove Chapman-Robbins-Kiefer inequality.
 - b) Describe Fisher's scoring method of obtaining an MLE.

$$[8 + 8 = 16]$$

- Q5) a) Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, 1), \theta \in R$, distribution. The prior distribution of θ is N(0, 1). Find the Bayes estimator of θ under absolute error loss function.
 - b) Describe method of moments estimators. Let $X_1, X_2, ..., X_n$ be a sample from N(μ , σ^2) distribution. Obtain the method of moments estimator of (μ , σ^2).

$$[8 + 8 = 16]$$

- Q6) a) Show that if T_1 and T_2 are two sufficient statistics, then T_1 is a function of
 - b) State and prove Lehmann-Scheffe theorem.
 - c) Let $X_1, X_2, ..., X_n$ be a random sample from $U\left[\theta \frac{1}{2}, \theta + \frac{1}{2}\right]$ distribution. Obtain an MLE of θ .
 - d) Let $X \sim P(\lambda)$. $L(\lambda, d(x)) = (\lambda d(x))^2$. The prior distribution of λ is $G(\alpha, \beta)$. Calculate the Bayes risk for d(x) = x.

$$[4 \times 4 = 16]$$

Q7) Write short notes on the following.

$$[4 \times 4 = 16]$$

- a) Curved exponential family
- b) The regularity conditions of CR inequality
- c) Method of minimum chi-square
- d) U-statistic