| Seat | | |------|--| | No. | | | | M.Sc. (Part – I) (Semester -
STATISTICS (I
Sampling Theory | Paper – X) | |------------|---|--| | Day and D | Date : Saturday, 9-4-2016 | Total Marks : 70 | | Time : 10. | 30 a.m. to 1.00 p.m. | | | Instruc | ctions: 1) Attempt five questions.
2) Q. No. (1) and Q. No. (2) a
3) Attempt any three from C
4) Figures to the right indica | Q. No. (3) to Q. No. (7) . | | 1. A) Se | elect the correct alternative : | | | 1) | How often does the census bureau count? | u in India take a complete population | | | a) Every year | b) Every five years | | | c) Every ten years | d) Twice a year | | 2) | Which one of the following estimator | r is generally biased? | | | a) Difference estimator | b) Ratio estimator | | | c) Horvitz-Thompson estimator | • | | 3) | If n units are selected in a sample fr fraction is | om N population units, then sampling | | | a) $\frac{1}{N}$ b) $\frac{1}{N}$ | c) $\frac{n}{N}$ d) $\frac{n-1}{N}$ | | 4) | | erlapping blocks. Ten are selected at
d. The procedure is | | | a) Systematic sampling | b) Cluster sampling | | | c) Stratified sampling | d) SRSWR | | 5) | Harvitz-Hansen technique is used to | o deal with | | | a) Sampling errors | b) Non sampling errors | | | c) Non response errors | d) None of the above | - 1) In simple random sampling the finite population correction for variance is - 2) Under SRSWOR, the sample unit can occur _____ in the sample. - 3) Deming's technique deals with _____ - 4) A random start automatically fixes the subsequent selection of sample units in _____ sampling method. - 5) The basic principle of stratifying a population is that, the strata should be internally _____ - C) State whether following statements are **true** or **false**. - 1) Desraj ordered estimators are biased. - 2) Lahiri's method is convenient for PPSWR sampling. - 3) Regression estimators are generally biased. - 4) Midzuno system of sampling is used in systematic sampling. (5+5+4) ### 2. a) Answer the following: - i) Explain circular systematic sampling. - ii) Describe Lahiri's method for drawing PPSWR samples. - b) Write short note on the following: - i) Two stage sampling - ii) Murthy's unordered estimator. (6+8) ### 3. a) Define: - i) Sampling unit - ii) Sampling frame - iii) Non-sampling error. b) In SRSWR scheme, show that $$Var(\overline{y}) = \frac{\sigma^2}{n}$$. (6+8) - 4. a) Explain the problem of allocating the sample size in stratified random sampling. Derive the proportional allocation. - b) Define cluster sampling. Develop a basic theory for single stage cluster sampling for estimating a population mean by assuming SRSWOR of clusters. (7+7) - 5. a) Define PPSWR sampling design. Obtain an unbiased estimator of population total and its variance when PPSWR sample of size n is drawn from a population of size N. - b) Explain ordered and unordered estimators. Develop Murthy's unordered estimator for n = 2. (7+7) - 6. a) Describe linear systematic sampling. Derive the sampling variance of unbiased estimator of population mean under this scheme. - b) Define ratio estimator and derive the approximate expression for bias. Assume SRSWOR scheme. (7+7) - 7. a) Explain the problem of non response and any one technique to deal with non-response. - b) Outline regression method of estimating a population mean. Assuming SRSWOR, derive the MSE of the estimator. (7+7) ____ | Seat | | |------|--| | No. | | # M.Sc. (Part – I) (Semester – II) Examination, 2015 | | STA | TISTICS (Panpling Theo | | | -0.10 | |---------------------------------------|---|---|---|-------------------------|-------------------| | Day and Date : Sa
Time : 11.00 a.m | • | 5 | | | Total Marks: 70 | | Instructio | 3) Attempt & | ive questions.
and Q. No. 2 a
any three fron
o the right ind | re compu n
1 Q. No. 3 1 | to Q. No. | 7 . | | 1. a) Choose th | ne correct alterna | tive : | | | 5 | | • | vestigator selects
s then such a sam | | | | | | a) sys | tematic sampling | k | o) double s | ampling | | | c) two | -stage sampling | (| d) clusters | ampling | | | 2) System | natic sampling mea | ans | | | | | a) sel | ecting n continuo | us units | | | | | b) sel | ecting n units situ | ated at equal i | ntervals | | | | c) sel | ection of n largest | t units | | | | | d) sel | ection of any n un | iits | | | | | · . | oroportional alloca | ation, the samp | ole size for | i th stratur | n is proportional | | a) N _i | b) | N _i S _i | c) N _i S _i ² | d) | $\frac{N_i}{S_i}$ | | 4) Which | of the following es | stimators is ge | nerally bia | sed? | | | a) Ho | vitz-Thompson E | stimator | | | | | b) De: | s Raj estimator | | | | | | c) He | artly-Ross estima | tor | | | | | d) Rat | io estimator | | | | | | | 5) | Non sampling errors occurs in | | |----|---|--|---| | | | a) only sample surveys | | | | | b) only complete enumeration | | | | | c) sample surveys as well as complete enumeration | | | | | d) none of these | | | b) | Fi | Il in the blanks : | 5 | | | 1) | Horvitz-Thompson estimator is used when sample selection is done with probabilities. | | | | 2) | Errors introduced in editing, coding and tabulating the results are errors. | | | | 3) | Strata in stratified sampling should be internally | | | | 4) | Under SRSWOR, the sample unit can occur in the sample. | | | | 5) | If 30 units are drawn in a population of 300 units then sampling fraction is | | | | | | | | c) | St | ate whether the following statements are True or False : | 4 | | c) | | tate whether the following statements are True or False : Des Raj estimators are unbiased. | 4 | | c) | 1) | | 4 | | c) | 1)
2) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means | 4 | | c) | 1)
2)
3) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. | 4 | | · | 1)
2)
3)
4) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. | 4 | | · | 1)
2)
3)
4)
Ar | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. | | | · | 1)
2)
3)
4)
Ar
i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In the following: | | | a) | 1) 2) 3) 4) Ar i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every | | | a) | 1)
2)
3)
4)
Ar
i)
ii) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. | 6 | | a) | 1) 2) 3) 4) Ar i) ii) W | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. | 6 | - 3. a) In SRSWOR examine whether sample mean is an unbiased estimator of population mean. Derive its variance. - b) Define linear systematic sampling. Derive the sampling variance of the traditional unbiased estimator of a population mean under this scheme. (6+8) - 4. a) Explain two stage sampling. Give a practical situation where such a design can be used. - b) Explain a cluster sampling. In SRSWOR of n clusters each containing M elements from a population of N clusters. Show that sample mean is unbiased estimator of population mean. (7+7) - 5. a) Describe stratified random sampling. Explain various sample allocation criteria in stratified sampling. - b) Explain the concept of formation of strata. Derive the proportional allocation for the best value of the boundary point Y_h of
h^{th} stratum. (7+7) - 6. a) Explain the ratio and regression methods of estimation. - b) Make a comparison between the ratio and regression estimators in terms of MSE and state when the ratio estimator can be more efficient than regression estimator. Justify your answer. (7+7) - 7. a) What is the problem of non response? Discuss Hansen-Hurwitz technique for dealing this problem. - b) Define ordered and unordered estimators. Develop Murthy's unordered estimator for n = 2. (7+7) _____ | Seat | | |------|--| | No. | | # M.Sc. (Semester - II) (CBCS) Examination Oct/Nov-2019 | | | Statistics SAMPLING THEOR | Υ | |-------|---------------|--|---| | | | e: Monday, 11-11-2019
O AM To 02:00 PM | Max. Marks: 70 | | Instr | uction | 1) All questions are compulsory.2) Figures to the right indicate full marks. | | | Q.1 | Fill ir
1) | | livided into sub populations
bpopulations then | | | 2) | In SRSWOR, the probability that a particular to draw is a) $\frac{r}{N}$ b) $\frac{1}{N}$ c) $\frac{1}{N}$ d) $\frac{r}{N}$ | | | | 3) | In a linear systematic sampling with interval 4 the probability that a specified units is include a) $\frac{1}{35}$ b) $\frac{1}{40}$ c) $\frac{25}{40}$ d) $\frac{1}{100}$ | 0 from a population of 1000 units, d in the sample is | | | 4) | A population of size $N=5$ units has mean \overline{Y}_N random sample of size $n=2$ units is drawn we sample mean is denoted by \overline{Y}_n . Then $E[\overline{Y}_n^{\ 2}]$ is a) 30 b) 50 c) 144 d) 174 | ithout replacement and | | | 5) | · · · · · · · · · · · · · · · · · · · | r is
vays unbaised
ne of these | | | 6) | In SRSWR scheme, the variance of sample ma) $\left(\frac{N-1}{N}\right)\frac{\sigma^2}{n}$ b) $\frac{\sigma^2}{n}$ c) $\left(\frac{N-n}{N-1}\right)\frac{\sigma^2}{n}$ d) $\left(\frac{N-n}{N-1}\right)\frac{\sigma^2}{n}$ | · · · · · · · · · · · · · · · · · · · | | | 7) | Stratified sampling is more precise than the i | ystematic sampling if serial gative | d) Equal to zero c) Nearly equal to one | 8) | a) | n sampling errors occurs in
Only sample surveys
Both a and b | b) | Only complete enumeration
None of these | | |-----|-----------------------------------|---|--|--|----| | 9) | at r
a) | eity is divided into 100 non-overlage
andom and completely enumerate
Systematic sampling
Cluster sampling | ed. T
b) | | | | 10) | pro
a) | sampling with probability proportion bability proportional to Size of the unit Population size |
b) | Size, the units are selected with Size of the sample None of these | | | 11) | , | e census Bureau in India takes a years. | , | | | | | , | 5
12 | b)
d) | 10
None of these | | | 12) | a) | nple regression estimator of popul $ar{X} + b(ar{x} - ar{y}) \ ar{x} + b(ar{X} - ar{y})$ | | mean is given by $\bar{y} + b(\bar{X} - \bar{x})$ $\bar{X} + b(\bar{y} - \bar{x})$ | | | 13) | frac | units are selected in a sample front | om N | population units, the sampling | | | | a)
c) | $\frac{1}{n}$ $\frac{n}{N}$ | b) | $\frac{1}{N}$ $\frac{n-1}{N}$ | | | 14) | Un | N
der Neyman allocation, the samp | | | | | | | N_iS_i | b) | $N_i S_i^2$ | | | | c) | N_i | d) | $N_i S_i^2$ $\frac{N_i}{S_i}$ | | | A) | Ans
1)
2)
3)
4)
5) | Give advantages of sampling m
Specify proportional allocation in
Define probability proportional to
Distinguish between ration and
Describe Murthy's unordered es | Any Fethodon stractions in the straction of | our) over census method. tified sampling. (PPS) sampling. ssion estimators. | 08 | | B) | Writ
1)
2)
3) | te short notes. (Any Two) Midzuno system of sampling Non-sampling errors Circular systematic sampling | | | 06 | | A) | Ans
1)
2)
3) | Describe a procedure for obtain population of size N using SRS\ Describe cumulative total methor Define a two-stage sampling de where such a design can be use | ing a
WOR
od for
sign a | sample of size n from a
method.
PPS sampling. | 08 | Q.2 Q.3 ## **SLR-JS-376** | | Б) | 1) | Derive the sampling variance of the systematic sample mean in terms of intraclass correlation. | UO | |-----|----|------------------|--|----| | | | 2) | Define Horvitz-Thompson estimator for the population total. Show that it is unbiased and obtain an unbiased estimator of its variance. | | | Q.4 | A) | Ans 1) 2) 3) | In SRSWOR of n clusters each containing M elements from a population of N clusters. Obtain mean and variance of estimator of sample mean. Explain the benefits of stratifying a population before sampling. Derive the optimum allocation for the sample size assuming a linear cost function. In SRSWOR, show that the sample mean \bar{y} is unbiased for population | 10 | | | | 3) | mean. Obtain the sampling variance of \bar{y} . | | | | B) | Ans 1) 2) | In SRSWOR, show that the probability of drawing a specified unit at every draw is same. Define PPSWR sampling design. Explain Lahiri's method for drawing a PPSWR sample. | 04 | | Q.5 | | | the following questions. (Any Two) | 14 | | | 1) | | ne ratio estimator and derive the approximate expression for bias. ume SRSWOR scheme. | | | | 2) | Disc | cuss Hansen-Hurwitz technique in the presence of non-response in
veys. | | | | 3) | Defi | ne systematic sampling. Discuss situations when systematic sampling ore efficient than SRSWOR. | | | Seat | | |------|--| | No. | | # M.Sc. (Part – I) (Semester – II) Examination, 2015 | | STA | TISTICS (Panpling Theo | | | -0.10 | |---------------------------------------|---|---|---|-------------------------|-------------------| | Day and Date : Sa
Time : 11.00 a.m | • | 5 | | | Total Marks: 70 | | Instructio | 3) Attempt & | ive questions.
and Q. No. 2 a
any three fron
o the right ind | re compu n
1 Q. No. 3 1 | to Q. No. | 7 . | | 1. a) Choose th | ne correct alterna | tive : | | | 5 | | • | vestigator selects
s then such a sam | | | | | | a) sys | tematic sampling | k | o) double s | ampling | | | c) two | -stage sampling | (| d) clusters | ampling | | | 2) System | natic sampling mea | ans | | | | | a) sel | ecting n continuo | us units | | | | | b) sel | ecting n units situ | ated at equal i | ntervals | | | | c) sel | ection of n largest | t units | | | | | d) sel | ection of any n un | iits | | | | | · . | oroportional alloca | ation, the samp | ole size for | i th stratur | n is proportional | | a) N _i | b) | N _i S _i | c) N _i S _i ² | d) | $\frac{N_i}{S_i}$ | | 4) Which | of the following es | stimators is ge | nerally bia | sed? | | | a) Ho | vitz-Thompson E | stimator | | | | | b) De: | s Raj estimator | | | | | | c) He | artly-Ross estima | tor | | | | | d) Rat | io estimator | | | | | | | 5) | Non sampling errors occurs in | | |----|---|--|---| | | | a) only sample surveys | | | | | b) only complete enumeration | | | | | c) sample surveys as well as complete enumeration | | | | | d) none of these | | | b) | Fi | Il in the blanks : | 5 | | | 1) | Horvitz-Thompson estimator is used when sample selection is done with probabilities. | | | | 2) | Errors introduced in editing, coding and tabulating the results are errors. | | | | 3) | Strata in stratified sampling should be internally | | | | 4) | Under SRSWOR, the sample unit can occur in the sample. | | | | 5) | If 30 units are drawn in a population of 300 units then sampling fraction is | | | | | | | | c) | St | ate whether the following statements are True or False : | 4 | | c) | | tate whether the following statements are True or False : Des Raj estimators are unbiased. | 4 | | c) | 1) | | 4 | | c) | 1)
2) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means | 4 | | c) | 1)
2)
3) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. | 4 | | · | 1)
2)
3)
4) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. | 4 | | · | 1)
2)
3)
4)
Ar | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. | | | · | 1)
2)
3)
4)
Ar
i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In the following: | | | a) | 1) 2) 3) 4) Ar i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every | | | a) | 1)
2)
3)
4)
Ar
i)
ii) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. | 6 | | a) | 1) 2) 3) 4) Ar i) ii) W | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. | 6 | | Seat | | |------|--| | No. | | ### M.Sc. (Part - I) (Semester - II) Examination, 2015 STATISTICS (Paper - X) Sampling Theory (New) | Day and Date : Saturday, 25-4-2015 Total Mark | s:70 | |---|------| |---|------| Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the **right** indicate **full** marks. - 1. a) Choose the correct alternative. 1) If n units are selected in a sample from N population units, then sampling - a) $\frac{1}{N}$ b) $\frac{1}{n}$ c) $\frac{n}{N}$ d) $1 \frac{n}{N}$ 2) In a stratified sampling with strata sizes N₁ and N₂, stratum variances S_1^2 , S_2^2 under Neyman allocation the ratio of sample size $\frac{n_1}{n_2}$ is _____ - a) $\frac{N_1}{N_2}$ b) $\frac{N_1 S_1}{N_2 S_2}$ c) $\frac{S_1}{S_2}$ d) $\frac{N_1 S_1^2}{N_2 S_2^2}$ 3) In simple random sampling the ratio estimator is ______ - a) always biased - b) always unbiased - c) minimum variance unbiased - d) none of these 5 | | 4) | | 500, and 15 students are then selected ne procedure adopted is | | |----|-----|--|--|----| | | | a) cluster sampling b) |) systematic sampling | | | | | c) two-stage sampling d) | stratified sampling | | | | 5) | Hurwitz-Hansen technique is used | I to deal with | | | | | a) non response errors b) | non sampling errors | | | | | c) sampling errors d) | none of these | | | b) | Fil | ill in the blanks : | | 5 | | | 1) | Cluster sampling helps to | cost of survey. | | | | 2) | A basic principle of stratifying a pointernally | opulation is that the strata should be | | | | 3) | Under SRSWR, the sample unit car | n occurtimes in the sample. | | | | 4) | In Midzuno sampling scheme, theprobabilities. | unit at first draw is selected with | | | | 5) |) Failure to measure some of the un | nits in the selected sample is erro | r. | | c) | Sta | tate whether the following statemen | nts are true or false : | 4 | | | 1) | Regression estimators are genera | ılly biased. | | | | 2) | Deep stratification is a technique ι | used to deal with non sampling errors. | | | | 3) | Systematic sampling is equal prob | pability sampling. | | | | 4) | In PPS sampling some units may | be selected with probability one. | | | a) | An | nswer the following : | | 6 | | | i) | What are basic principles of samp sampling over census method. | le survey? Write in brief advantages of | | | | ii) | Define circular systematic samplir | ng. Give an example. | | | b) | Wı | rite short notes on the following: | | 8 | | | i) | Cumulative total method | | | | | ii) | Midzuno system of sampling. | | | | | | | | | - 3. a) Explain and illustrate the benefits of stratifying a population before sampling. - b) Describe any two methods for allocating a sample of size n to different strata of population. (6+8) - 4. a) Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of population mean under the linear systematic sampling. - b) Explain cluster sampling and clearly specify the advantages of the scheme. (7+7) - 5. a) Explain the ratio and regression methods of estimation. When are these methods considered to be efficient? - b) Define unbiased and almost unbiased ratio-type estimators. (8+6) - 6. a) Define PPSWR sampling design. Obtain an unbiased estimator of the population mean and its variance when a PPSWR sample of size n is drawn from a population of size n. - b) Define Horvitz-Thompson estimator of population mean and establish its unbaisedness under an arbitrary sampling design. Also derive its sampling variance. (7+7) - 7. a) Explain the problem of non response and any one technique to deal with the non response. - b) What is double sampling? Explain any one practical situation where double sampling is appropriate. (8+6) | Seat | | |------|--| | No. | | # M.Sc. (Part – I) (Semester – II) Examination, 2015 | | STA | TISTICS (Panpling Theo | | | -0.10 | |---------------------------------------
---|---|---|-------------------------|-------------------| | Day and Date : Sa
Time : 11.00 a.m | • | 5 | | | Total Marks: 70 | | Instructio | 3) Attempt & | ive questions.
and Q. No. 2 a
any three fron
o the right ind | re compu n
1 Q. No. 3 1 | to Q. No. | 7 . | | 1. a) Choose th | ne correct alterna | tive : | | | 5 | | • | vestigator selects
s then such a sam | | | | | | a) sys | tematic sampling | k | o) double s | ampling | | | c) two | -stage sampling | (| d) clusters | ampling | | | 2) System | natic sampling mea | ans | | | | | a) sel | ecting n continuo | us units | | | | | b) sel | ecting n units situ | ated at equal i | ntervals | | | | c) sel | ection of n largest | t units | | | | | d) sel | ection of any n un | iits | | | | | · . | oroportional alloca | ation, the samp | ole size for | i th stratur | n is proportional | | a) N _i | b) | N _i S _i | c) N _i S _i ² | d) | $\frac{N_i}{S_i}$ | | 4) Which | of the following es | stimators is ge | nerally bia | sed? | | | a) Ho | vitz-Thompson E | stimator | | | | | b) De: | s Raj estimator | | | | | | c) He | artly-Ross estima | tor | | | | | d) Rat | io estimator | | | | | | | 5) | Non sampling errors occurs in | | |----|---|--|---| | | | a) only sample surveys | | | | | b) only complete enumeration | | | | | c) sample surveys as well as complete enumeration | | | | | d) none of these | | | b) | Fi | Il in the blanks : | 5 | | | 1) | Horvitz-Thompson estimator is used when sample selection is done with probabilities. | | | | 2) | Errors introduced in editing, coding and tabulating the results are errors. | | | | 3) | Strata in stratified sampling should be internally | | | | 4) | Under SRSWOR, the sample unit can occur in the sample. | | | | 5) | If 30 units are drawn in a population of 300 units then sampling fraction is | | | | | | | | c) | St | ate whether the following statements are True or False : | 4 | | c) | | tate whether the following statements are True or False : Des Raj estimators are unbiased. | 4 | | c) | 1) | | 4 | | c) | 1)
2) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means | 4 | | c) | 1)
2)
3) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. | 4 | | · | 1)
2)
3)
4) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. | 4 | | · | 1)
2)
3)
4)
Ar | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. | | | · | 1)
2)
3)
4)
Ar
i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In the following: | | | a) | 1) 2) 3) 4) Ar i) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every | | | a) | 1)
2)
3)
4)
Ar
i)
ii) | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. | 6 | | a) | 1) 2) 3) 4) Ar i) ii) W | Des Raj estimators are unbiased. In PPSWR sampling design, an unbiased estimator of the population means does not exist. In two-stage sampling, second stage units should be always equal sized. Lahiri's method is convenient for PPSWR sampling. In swer the following: Explain sampling method and census method. In SRSWOR, show that the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. In the probability of drawing a specified unit at every draw is same. | 6 | - 3. a) In SRSWOR examine whether sample mean is an unbiased estimator of population mean. Derive its variance. - b) Define linear systematic sampling. Derive the sampling variance of the traditional unbiased estimator of a population mean under this scheme. (6+8) - 4. a) Explain two stage sampling. Give a practical situation where such a design can be used. - b) Explain a cluster sampling. In SRSWOR of n clusters each containing M elements from a population of N clusters. Show that sample mean is unbiased estimator of population mean. (7+7) - 5. a) Describe stratified random sampling. Explain various sample allocation criteria in stratified sampling. - b) Explain the concept of formation of strata. Derive the proportional allocation for the best value of the boundary point Y_h of h^{th} stratum. (7+7) - 6. a) Explain the ratio and regression methods of estimation. - b) Make a comparison between the ratio and regression estimators in terms of MSE and state when the ratio estimator can be more efficient than regression estimator. Justify your answer. (7+7) - 7. a) What is the problem of non response? Discuss Hansen-Hurwitz technique for dealing this problem. - b) Define ordered and unordered estimators. Develop Murthy's unordered estimator for n = 2. (7+7) _____ | Seat | | |------|--| | No. | | ### M.Sc. (Part - I) (Semester - II) Examination, 2015 STATISTICS (Paper - X) Sampling Theory (New) | Day and Date : Saturday, 25-4-2015 Total Mark | s:70 | |---|------| |---|------| Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the **right** indicate **full** marks. - 1. a) Choose the correct alternative. 1) If n units are selected in a sample from N population units, then sampling - a) $\frac{1}{N}$ b) $\frac{1}{n}$ c) $\frac{n}{N}$ d) $1 \frac{n}{N}$ 2) In a stratified sampling with strata sizes N₁ and N₂, stratum variances S_1^2 , S_2^2 under Neyman allocation the ratio of sample size $\frac{n_1}{n_2}$ is _____ - a) $\frac{N_1}{N_2}$ b) $\frac{N_1 S_1}{N_2 S_2}$ c) $\frac{S_1}{S_2}$ d) $\frac{N_1 S_1^2}{N_2 S_2^2}$ 3) In simple random sampling the ratio estimator is ______ - a) always biased - b) always unbiased - c) minimum variance unbiased - d) none of these 5 | | 4) | | 500, and 15 students are then selected ne procedure adopted is | | |----|-----|--|--|----| | | | a) cluster sampling b) |) systematic sampling | | | | | c) two-stage sampling d) | stratified sampling | | | | 5) | Hurwitz-Hansen technique is used | I to deal with | | | | | a) non response errors b) | non sampling errors | | | | | c) sampling errors d) | none of these | | | b) | Fil | ill in the blanks : | | 5 | | | 1) | Cluster sampling helps to | cost of survey. | | | | 2) | A basic principle of stratifying a pointernally | opulation is that the strata should be | | | | 3) | Under SRSWR, the sample unit car | n occurtimes in the sample. | | | | 4) | In Midzuno sampling scheme, theprobabilities. | unit at first draw is selected with | | | | 5) |) Failure to measure some of the un | nits in the selected sample is erro | r. | | c) | Sta | tate whether the following statemen | nts are true or false : | 4 | | | 1) | Regression estimators are genera | ılly biased. | | | | 2) | Deep stratification is a technique ι | used to deal with non sampling errors. | | | | 3) | Systematic sampling is equal prob | pability sampling. | | | | 4) | In PPS sampling some units may | be selected with probability one. | | | a) | An | nswer the following : | | 6 | | | i) | What are basic principles of samp sampling over census method. | le survey? Write in brief advantages of | | | | ii) | Define circular systematic samplir | ng. Give an example. | | | b) | Wı | rite short notes on the following: | | 8 | | | i) | Cumulative total method | | | | | ii) | Midzuno system of sampling. | | | | | | | | | - 3. a) Explain and illustrate the benefits of stratifying a population before sampling. - b) Describe any two methods for allocating a sample of size n to different strata of population. (6+8) - 4. a) Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of population mean under the linear systematic sampling. - b) Explain cluster sampling and clearly
specify the advantages of the scheme. (7+7) - 5. a) Explain the ratio and regression methods of estimation. When are these methods considered to be efficient? - b) Define unbiased and almost unbiased ratio-type estimators. (8+6) - 6. a) Define PPSWR sampling design. Obtain an unbiased estimator of the population mean and its variance when a PPSWR sample of size n is drawn from a population of size n. - b) Define Horvitz-Thompson estimator of population mean and establish its unbaisedness under an arbitrary sampling design. Also derive its sampling variance. (7+7) - 7. a) Explain the problem of non response and any one technique to deal with the non response. - b) What is double sampling? Explain any one practical situation where double sampling is appropriate. (8+6) ## **SLR-ES-374** | Seat
No. | Set | Р | |-------------|-----|---| | 140. | | | ## M.Sc. (Semester - II) (CBCS) Examination March/April-2019 | | | | Statistic | cs | EORY | | |--------|-----|---|---|---------------|--|----| | • | | ate: Thursday, 25-04-2
00 PM To 02:30 PM | 2019 | | Max. Marks: | 70 | | Instru | cti | ons: 1) All questions
2) Figures to the | are compulsory.
e right indicate full r | nar | rks. | | | | 1) | oose Correct Alternation stratified random stallocation when the standard debt equal standard debt equal standard debt equal standard debt equal size and equal equal size and | ampling, optimum a
trata have
viations
ual standard deviati
viation and equal p | allo | ocation reduces to proportional | 14 | | | ŕ | A random start autom in sampling random c) cluster | | b) | equent selection of sample units stratified systematic | | | | , | | s in a district. Then | wł
?
b) | mate the average size of land nich one of the following will be Systematic Multistage | | | | | | _ | tior
b) | into two strata such that $N_1 = 30$, in $n_1=6$ then the sample size n will 12 30 | | | | | | | me
b) | rlapping blocks. Five blocks are rated. This procedure is known Systematic sampling Stratified sampling | | | | 6) | Which of the following a) Horvitz-Thompson c) Heartly – Ross | | b) | ılly biased?
Des Raj
Ratio | | | | | Variance of proportio allocation. a) equal to c) less than | nal allocation is alv | b) | rs that of optimum) greater than) none of these | | | | ŕ | Under Neyman alloca
to
a) NiSi
c) Ni | ation, the sample si | b) | for $i^{ ext{th}}$ stratum is proportional
) NiSi ²
) Ni/Si | | | | 9) Simple regression estimator of population mean is given by | | |-----|---|----| | | a) $\frac{ar{y}_n}{ar{x}_n} \cdot ar{X}_N$ b) $ar{y}_n - \hat{eta}(ar{x}_n - ar{X}_N)$ | | | | c) $\sum_{i=1}^{N_K} Pi[\bar{y}_{n_i} + \hat{\beta}_i(\bar{x}_{n_i} - \bar{X}_{N_i})]$ d) None of these | | | | 10) Precision of random sample a) increases with increase in the sample size b) decreases with increase in the sample size c) has no relation with sample size d) none of the above | | | | 11) Nonresponse in survey means a) non availability of respondent b) non return of questionnaire by the respondent c) refuse to give information by the respondent d) all the above | | | | 12) Which one of the following is not an example of non-sampling? a) measurement error b) refusal by a unit to respond c) editing error d) error due to selecting only a part of the population as sample | | | | 13) In cluster sampling, it is better to have a) cluster which are homogenous within b) cluster which are heterogenous within c) small cluster size d) variance of cluster means is same for all the clusters | | | | 14) If n units are selected in a sample from N population units then sampling fraction is a) $\frac{1}{n}$ b) $\frac{1}{N}$ c) $\frac{n}{N}$ d) $\frac{n-1}{N}$ | | | Q.2 | A) Answer the following (Any Four) 1) What do you understand by non-response error? 2) Explain the equal allocation in stratified sampling with the help of suitable example. 3) Define Des Raj ordered estimator for the population total. 4) Give two advantages of sampling method over census method. 5) Define PPSWR sampling design. | 08 | | | B) Write Notes on (Any two) 1) Cluster sampling 2) Method of collapsed strata 3) Circular systematic sampling | 06 | | Q.3 | A) Answer the following (Any two) 1) Define ratio estimator of population mean and obtain its bias. 2) Describe cumulative total method for drawing PPSWR samples. What are its limitations? 3) Define midzuno sampling design. Obtain single and double inclusion probabilities. | 08 | | | Answer the following (Any one) Define Horvitz-Thompson estimator for population total. Examine it for unbiasedness. | 06 | ### SLR-ES-374 | 2) | In SRSWR, derive an unbiased estimator of population mean and its | |----|---| | | sampling variance. | #### Q.4 A) Answer the following (Any two) 10 - 1) Develop Murthy's unordered estimator for n = 2. - 2) Describe non-sampling errors. Describe main sources of these errors. - 3) Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of a population mean under the linear systematic sampling. #### B) Answer the following (Any one) 04 - 1) In SRSWOR, show that the probability of drawing a specified unit at every draw is same. - 2) Define a two-stage sampling design and give a practical situation where such a design can be used. #### Q.5 Answer the following (Any two) 14 - **a)** What is proportional allocation? Derive the variance of the estimator of the population mean under this allocation. - **b)** Explain the problem of non-response and any one technique to deal with the non-response. - **c)** Explain the regression method for estimation. Assuming SRSWOR, derive the MSE of the estimator of population mean. | Seat | | |------|--| | No. | | # M.Sc. (Part - I) (Semester - II) Examination, 2016 | | | (Paper – X)
ory (Old CGPA) | | |--|--|--|--| | Day and Date : Saturday, | 9-4-2016 | | Total Marks: 70 | | Time: 10.30 a.m. to 1.00 | p.m. | | | | 3) Atte | No. (1) and Q. No.
empt any three fro | os.
(2) are compulsory
om Q. No. (3) to Q. Nondicate full marks. | | | 1. a) Choose the correct | t alternative. | | 5 | | 1) Under Neyma
to | n allocation, the | sample size for i th s | stratum is proportional | | a) N _i S _i | b) N _i S _i ² | c) $\frac{N_i}{S_i}$ | d) N _i | | • | vith 10 draws from p
mean is | - | and $S^2 = 100$, the standard | | a) 1.25 | b) 1.50 | c) 2.50 | d) 3.00 | | 3) Sample regres | sion estimator of p | opulation mean is giv | ven by | | a) $\overline{X} + b(\overline{x} - \overline{y})$ | b) $y + b(X - x)$ | c) $x + b(X - y)$ | d) $\overline{X} +
b(\overline{y} - \overline{x})$ | | 4) Systematic san | npling is more pred | cise than SRSWOR it | f | | a) $\rho_{wsy} = \frac{1}{n-1}$ | b) $\rho_{\text{wsy}} > \frac{-1}{\text{nk} - 1}$ | c) $\rho_{\text{wsy}} < \frac{-1}{\text{nk} - 1}$ | d) $\rho_{wsy} < \frac{1}{n-1}$ | | 5) Hurwitz-Hanse | n technique is use | d to deal with | _ | | a) non samplir | ig errors | b) non response | errors | | c) sampling er | rors | d) none of these | | | | b) | Fill in the blanks: | 5 | |----|----|---|-------------| | | | In Midzuno sampling scheme the units from second draw are selected with probabilities. | | | | | 2) The difference between variances of sample mean in SRSWR and SRSWOR is | | | | | 3) Stratified sampling is not preferred when the population is | | | | | 4) Non response errors introduce in the estimator. | | | | | 5) A random start automatically fixes the subsequent selection of sample unit in sampling method. | | | | c) | State whether the following statements are true or false . | 4 | | | | 1) Des Raj ordered estimators are pairwise uncorrelated. | | | | | 2) SRSWOR scheme is always more precise than the SRSWR scheme for a given sample size. | | | | | 3) In PPS sampling the probability of drawing any specified unit at a given draw is same. | | | | | 4) Proportional allocation of sample in stratified sampling is more precise than optimal allocation. | | | 2. | a) | Answer the following. | 6 | | | | i) Describe a procedure for obtaining a sample of size n from a population of
size N using SRSWOR method. | | | | | ii) Explain Lahiri's method for PPSWR sampling. | | | b) | | Write short notes on the following: | 8 | | | | i) Neyman allocation. | | | | | ii) Deming's technique. | | | 3. | a) | Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of a population mean under linear systematic sampling. | | | | b) | Describe two stage sampling design. Give a practical situation where such a design can be used. (6- | -8) | - 4. a) What is proportional allocation? Derive the variance of estimator of the population mean under this allocation. - b) With usual notations prove that $V_{opt} \le V_{prop} \le V_{ran}$. (7+7) - 5. a) Define PPSWR sampling design. Obtain an unbiased estimator of population total and its variance when PPSWR sample of size n is drawn from a population of size N. - b) Define Horvitz-Thompson estimator for population total. Show that it is unbiased. Obtain its variance. (7+7) - 6. a) Describe Midzuno system of sampling design. Under this sampling design, derive the first and second order inclusion probabilities. - b) Define cluster sampling. Develop a basic theory for single stage cluster sampling for estimating a population mean assuming SRSWOR of clusters. (7+7) - 7. a) Define the ratio method of estimation of population total. Assuming SRSWOR, derive approximate expression for bias of ratio estimator. - b) Define linear regression estimator for population mean. Investigate its properties under SRSWOR scheme. (7+7) | Seat | | |------|--| | No. | | ### M.Sc. (Part - I) (Semester - II) Examination, 2015 STATISTICS (Paper - X) Sampling Theory (New) | Day and Date : Saturday, 25-4-2015 Total Mark | s:70 | |---|------| |---|------| Time: 11.00 a.m. to 2.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. 1 and Q. No. 2 are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the **right** indicate **full** marks. - 1. a) Choose the correct alternative. 1) If n units are selected in a sample from N population units, then sampling - a) $\frac{1}{N}$ b) $\frac{1}{n}$ c) $\frac{n}{N}$ d) $1 \frac{n}{N}$ 2) In a stratified sampling with strata sizes N₁ and N₂, stratum variances S_1^2 , S_2^2 under Neyman allocation the ratio of sample size $\frac{n_1}{n_2}$ is _____ - a) $\frac{N_1}{N_2}$ b) $\frac{N_1 S_1}{N_2 S_2}$ c) $\frac{S_1}{S_2}$ d) $\frac{N_1 S_1^2}{N_2 S_2^2}$ 3) In simple random sampling the ratio estimator is ______ - a) always biased - b) always unbiased - c) minimum variance unbiased - d) none of these 5 | | 4) | | 500, and 15 students are then selected ne procedure adopted is | | | |----|-----|--|--|----|--| | | | a) cluster sampling b) |) systematic sampling | | | | | | c) two-stage sampling d) | stratified sampling | | | | | 5) | Hurwitz-Hansen technique is used | I to deal with | | | | | | a) non response errors b) | non sampling errors | | | | | | c) sampling errors d) | none of these | | | | b) | Fil | ill in the blanks : | | 5 | | | | 1) | Cluster sampling helps to | cost of survey. | | | | | 2) | A basic principle of stratifying a pointernally | opulation is that the strata should be | | | | | 3) | Under SRSWR, the sample unit car | n occurtimes in the sample. | | | | | 4) | In Midzuno sampling scheme, the probabilities. | unit at first draw is selected with | | | | | 5) |) Failure to measure some of the un | nits in the selected sample is erro | r. | | | c) | Sta | tate whether the following statemen | nts are true or false : | 4 | | | | 1) | 1) Regression estimators are generally biased. | | | | | | 2) | 2) Deep stratification is a technique used to deal with non sampling errors. | | | | | | 3) | Systematic sampling is equal probability sampling. | | | | | | 4) |) In PPS sampling some units may be selected with probability one. | | | | | a) | An | nswer the following : | | 6 | | | | i) | What are basic principles of samp sampling over census method. | le survey? Write in brief advantages of | | | | | ii) | Define circular systematic samplir | ng. Give an example. | | | | b) | Wı | rite short notes on the following: | | 8 | | | | i) | Cumulative total method | | | | | | ii) | Midzuno system of sampling. | | | | | | | | | | | - 3. a) Explain and illustrate the benefits of stratifying a population before sampling. - b) Describe any two methods for allocating a sample of size n to different strata of population. (6+8) - 4. a) Explain the concept of systematic sampling. Derive the sampling variance of unbiased estimator of population mean under the linear systematic sampling. - b) Explain cluster sampling and clearly specify the advantages of the scheme. (7+7) - 5. a) Explain the ratio and regression methods of estimation. When are these methods considered to be efficient? - b) Define unbiased and almost unbiased ratio-type estimators. (8+6) - 6. a) Define PPSWR sampling design. Obtain an unbiased estimator of the population mean and its variance when a PPSWR sample of size n is drawn from a population of size n. - b) Define Horvitz-Thompson estimator of population mean and establish its unbaisedness under an arbitrary sampling design. Also derive its sampling variance. (7+7) - 7. a) Explain the problem of non response and any one technique to deal with the non response. - b) What is double sampling? Explain any one practical situation where double sampling is appropriate. (8+6)