Shivaji University, Kolhapur

Question Bank for Mar 2022 (Summer Examination)

Subject code- 73303

Subject name- Plant Physiology

Q. 1 Multiple Choice Questions

1) The shrinkage of protoplasm due to loss of water is called
a) Exoosmosis b) Endoosmosis c) Plasmolysis d) Diffusion
2) principal water conducting element in Angiosperm.
a) Tracheid b) Vessel c) Sieve tube d) Companion cell
3) Diffusion of water molecules through semipermeable membrane is called
a) Transpiration b) Osmosis c) Plasmolysis d) Glycolysis
4) In dicot plants guard cells areshaped.
a) Kidney b) Dumbel c) Apple d) Conical
5) In monocot plants guard cells areshaped.
a) Kidney b) Dumbel c) Apple d) Conical
6) Transpiration mainly occurs through
a) Root b) Stem c) Leaf d) Flower
7) Internal factor affecting transpiration is
a) Temperature b) Pressure c) Light d) Root- shoot ratio
8) During day time starch is converted in to glucose phosphate by enzyme
a) Phosphatase b) Carboxylase c) Phosphorylase d) Catalase
9) The conversion of starch in to glucose phosphate takes place during night with pH
a) 5 b) 7 c) 8 d) 12
10) Donnan equillium is uptake of mineral.
a) Active b) Passive c) Positive d) Negative
11) acts as proton pumps.

a) NADP b) AMP c) ATPase complex d) FAD
12) Cell wall is
a) Permeable b) Impermeable
c) Differentially permeable d) Semi-permeable
13)is very long tube like tracheary element.
a) Tracheid b) Vessel c) Sieve tube d) Companion cell
14) Cation exchange is uptake a minerals.
a) Passive b) Active c) Negative d) Positive
15) Chemical potential means
a) Free energy available per molecule of the substance
b) Energy available per molecule of the substance
c) Energy of cell sap
d) Energy of nucleus
16)is a membrane phospholipid.
a) Lecithin b) Lucien c) Valine d) Cytosin
17)numbers of elements are essential for proper growth of plant.
a) 11 b) 17 c) 25 d) 30
18) C, H and O are to plants.
a) Macronutrients b) Micronutrients
c) Complete nutrients d) Incomplete nutrients
19)are known as protoplasmic elements.
a) S, P, N b) N, P, K c) C, N, O d) Ca, N, P
20)are known as framework elements.
a) C, H, O b) N, P, K c) C, N, O d) Ca, N, P
21)is essential for process of cell division.
a) Calcium b) Carbon c) Phosphorus d) Boron
22)acts as an activator for enzyme malic dehydrogenase.
a) Phosphorus b) Iron c) Manganese d) Calcium
23) Blossom end rot disease is due to deficiency of
a) Phosphorus b) Iron c) Magnesium d) Calcium

24) Rosette disease is due to deficiency of
a) Potassium b) Iron c) Magnesium d) Calcium
25) Ferrous sulphate is used for deficiency recovery of
a) Iron b) Phosphorus c) Magnesium d) Calcium
26) is important constituent of chlorophyll.
a) Boron b) Zinc c) Magnesium d) Calcium
27) Potassium deficiency is responsible for disease.
a) Die-back b) Blast c) Pahla blight d) Marsh spot
28) deficiency is responsible for sickle leaf disease.
a) Calcium b) Potassium c) Magnesium d) Phosphorus
29) Calcium is essential to reducetoxicity.
a) Metal b) Fungal c) Viral d) Bacterial
30)are micronutrients to the plants.
a) Fe and Mn b) Ca and K c) P and K d) C and O
31)is chief constituent of middle lamella.
a) Calcium b) Magnesium c) Potassium d) Iron
32) Mottled chlorosis is deficiency symptom of
a) Calcium b) Phosphorus c) Potassium d) Manganese
33) Calcium deficiency causes
a) Rosette disease b) Blossom end rot disease
c) Grey spec disease d) Die back disease
34) is added in the soil for deficiency recovery of calcium.
a) Lime b) Phosphate c) Potash d) Sulphate
35) is a link between organic and inorganic components in the
ecosystem.
a) Plants b) Animals c) Photosynthesis d) Respiration
36) Phycobilins are found in
a) Algae b) Fungi c) Bacteria d) Viruses
37) Phycobilins are found in

a) Algae b) Fungi c) Bacteria d) Viruses
38) Carotenoids are chemically
a) Terpenoid b) Porphyrin c) Phenolic d) Tetrapyrrol
39) Phycoerythrins are present inalgae
a) Brown b) Red c) Green d) Yellow
40) Phycocyanins are present inalgae.
10) I njecejamine dre present inargae.
a) Blue Green algae b) Red c) Green d) Yellow
41) The chemical formula of Chlorophyll b is
a) $C_{55}H_{70}O_6N_4Mg$ b) $C_{55}H_{74}O_6N_4Mg$
c) $C_{52}H_{70}O_5N_4Mg$ d) $C_{56}H_{72}O_5N_5Mg$
42) Chlorophyll d is present in algal members of division
a) Rhodophyta b) Chlorophyta c) Cyanophyta d) Phaeophyta
43) Chlorophyll e is present in algal members of division
a) Xanthophyta b) Chlorophyta c) Cyanophyta d) Phaeophyta
44) In chloroplast thylakoids forms
a) Cristae b) Stroma c) Granum d) ETS
45) The first CO ₂ acceptor in C ₃ plant is
a) Phosphoenol pyruvic acid b) Ribulose diphosphate
c) Oxalo acetic acid d) Phosphoglyceric acid
46) Sugarcane shows high efficiency of CO ₂ fixation because it performs
a) Calvin cycle b) HSK pathway
c) TCA cycle d) C ₅ cycle
47) The carbon dioxide acceptor in CAM plants is
a) Malic acid b) Oxalo acetic acid c) Pyruvic acid
d) Phosphoenol pyruvic acid
48) Reaction center of PS II is
a) P ₇₀₀ b) P ₆₇₀
c) P ₆₈₀ d) P ₇₆₀
49) Red drop effect was shown by
a) Hatch b) Calvin c) Benson d) Emerson

50) plants shows chloroplast dimo	rphism.				
a) C ₂ b) C ₃ c) C ₄ d) C ₅	5				
51) is the first stable product in C ₄ plants.					
a) Phosphoenol pyruvate b) l	Ribulose diphosphate				
c) Phosphoglyceric acid d) Oxalo acetic acid					
52) The energy change in photosynthesis is	s from				
a) Light energy to electrical energy					
b) Light energy to solar energy					
c)) Light energy to chemical energy					
d) Chemical energy to activation energ	<u>y</u>				
53) The chemical formula of Chlorophyll a	is				
a) C ₅₅ H ₇₂ O ₅ N ₄ Mg b) C ₅₅ H ₇₄ O ₆ N	N_4Mg				
c) $C_{52}H_{70}O_5N_4Mg$ d) $C_{56}H_{72}O_5N_5$	$_{5}{ m Mg}$				
a) Brown b) Red c) Green	d) Yellow				
54) is the site of photochemical rea	action.				
a) Quantasome b) Ribosome c) Ch	nromosome d) Polysome				
55)is the first phase of Calvin cyc	le.				
a) Oxidation b) Hydrogenation c) Ca	rboxylation d) Regeneration				
56) Kranz anatomy is found in					
a) Sunflower b) Sugarcane c) Mor	inga d) Mango				
57) The first CO_2 acceptor in C_4 plants is .					
a) Ribulose diphosphate b) Ph	osphoenol pyruvic acid				
c) Oxalo acetic acid d) Ph	osphoglyceric acid				
58) Phase is called as grand period of growth.					
a) Lag b) Log c) Steady	d) Senescence				
59) Maize is an example of					
a) SDP b) LDP c) DNP d) MI	DP				
60) Wheat is an example of					

a) SDP	b) LDP	c) DNP	d) MDP	
61) is a	a long day _l	plant.		
a) To	bacco t	o) coffee	c) Radis	h d) Rice
62) Cabbage	is an examp	ole	plant.	
a) SDP	b) DNP	c) LDP	d) PNP	
63) is o	day neutral	plant.		
a) Tor	nato t	o) coffee	c) Radis	h d) Rice
64) is	the precur	sor for synt	hesis of G	ibberellin in plants.
a) Acetat	e b) Mal	ate c) Ace	etyl CoA	d) PEP
65) Bakane	disease of 1	rice is cause	d by	
a) Fungı	us b) Algae	c) Bacteria	d)Virus	
66) Reversion	on of sex ex	pression is	a physiolo	ogical role of
a) Auxi	in b) Gib	berellin c)	Cytokinii	n d) ABA
67)is	s effective i	n closing of	f stomata.	
a) IAA	b) GA c) Cytokinin	d) ABA	
68) The apic	al dominan	ce is due to	presence	of
a) Auxin	b) Gibbere	ellin c) Oz	calo acetic	acid d) Cytokinin
69) The grow	vth curve is	s usually	sh	aped.
a) V	b) S	c) X	d) Z	
70) Phytochro	ome pigme	nt exists in	form	S.
a) Two	b) Three	c) Four	d) Five	
71) In plants	photoperio	dic stimulu	s is receiv	ed by
a) Root	b) Ster	m c) Lea	ıf c	l) Flower
72) Gibberel	lic acid like	hormone t	heory was	proposed by
a) Hess	b) Brian	n c) Caj	lachjan	d) Yabuta
73) Gene ac	tivation the	eory was pro	posed by	
a) Hes	s b) Bria	n c) Caj	lachjan	d) Yabuta.

- 74) The initial work on vernalization was done by
 - a) Hatch b) Lysenko
- c) Benson
- d) Emerson

Q.2 Long Answer Questions

- 1. What is transpiration? Explain mechanism of stomatal transpiration.
- 2. Define transpiration? Explain starch- sugar hypothesis of transpiration.
- 3. Explain briefly water transport through xylem.
- 4. Explain mechanism of water absorption.
- 5. Define micronutrients. Give the deficiency symptoms of Fe and Mn.
- 6. Define macronutrients. Give the role of Ca and Mg.
- 7. Define macronutrients. Give the deficiency symptoms of P and K.
- 8. Explain briefly any two micronutrients which you have studied.
- 9. Give an account of active uptake of minerals.
- 10. What are essential elements? Describe the symptoms caused due to deficiency of Ca and P.
- 11. Give an account of passive uptake of minerals.
- 12. What is photosynthesis? Give the significance of photosynthesis.
- 13. Explain in brief the photosynthetic apparatus.
- 14. What is photophosphorylation? Explain the cyclic and noncyclic photophosphorylation.
- 15. Describe in brief Calvin cycle.
- 16. Describe crassulacean acid metabolism.
- 17. What is growth? Explain the dynamics of growth.
- 18. What is photoperiodism? Give the classification of plants based on photoperiodism .
- 19. Explain C4 pathway.
- 20. What is growth? Describe the phases of growth.
- 21. What is vernalization? Describe in brief mechanism of vernalization.
- 22. What are phytohormones? Describe physiological role and practical applications of Auxins.

- 23. Describe physiological role and practical applications of Gibberillins.
- 24. Describe in brief florigen concept.

Q.2 Short Answer Questions

- 1. Diffusion
- 2. Osmosis
- 3. Water Potential
- 4. Chemical Potential
- 5. Physiological Importance of Water
- 6. Transpiration
- 7. Stomatal Transpiration
- 8. Starch Sugar hypothesis
- 9. Significance of Transpiration
- 10. Factors Affecting Transpiration
- 11. Macronutrients
- 12. Micronutrients
- 13. Active Uptake
- 14. Phospholipid hypothesis.
- 15. Donnan Equilibrium.
- 16. Physiological role of phosphorus.
- 17. Physiological role of calcium.
- 18. Physiological role of iron.
- 19. Physiological role of magnesium.
- 20. Deficiency symptoms of potassium.
- 21. Deficiency symptoms of manganese.
- 22. Deficiency symptoms of Phosphorus
- 23. Deficiency symptoms of iron.
- 24. Structure of Chloroplast
- 25. Chlorophylls.
- 26. Significance of Photosynthesis

- 27. Emmersions Enhancement Effect
- 28. Cyclic Photophosphorylation
- 29. Non Cyclic Photophosphorylation
- 30. Significance of C4 Cycle
- 31. Significance of CAM Pathway
- 32. Crassulacean Acid Metabolism
- 33. Calvin Cycle
- 34. HSK Pathway
- 35. Grand Period of Growth
- 36. Phases of Growth
- 37. Photoperiodism
- 38. Short Day Plans
- 39. Long Day Plants
- 40. Day Neutral Plants
- 41. Vernalization
- 42. Phytohormone Gibberellic Acid
- 43. Florigen Concept
- 44 Applications of Photoperiodism
- 44. Applications of Vernalization
- 45. Practical Applications of GA
- 46. Practical Applications of Auxin
- 47. Practical Application of Abscisic Acid