| Seat
No. | Set | Р | |-------------|-----|---| |-------------|-----|---| # M.Sc. (Semester - III) (CBCS) Examination Oct/Nov-2019 Statistics REGRESSION ANALYSIS | | | | REGRESSION | ANA | ALYSIS | | |-------|---------|-----------------------------------|---|-------------------|--|------| | | | | rday, 09-11-2019
o 05:30 PM | | Max. Marks: | : 70 | | Instr | uctior | | All questions are compulsory.
Figures to the right indicate full | mark | S. | | | Q.1 | Fill in | The L
a) co
b) co
c) if | llanks by choosing correct all
SE in general linear model is un
pefficient matrix is full rank
pefficient matrix is non-full rank
generalized inverse of coefficients | nique | e if | 14 | | | 2) | a) lir | ector in estimation space is
near
rojected | b) | _ to any vector in error space.
orthogonal
normalized | | | | 3) | a) so | nodel $Y=eta_0~e^{eta_1 X}\epsilon$ can be lineaquare root
garithmic | | by using transformation. reciprocal none of these | | | | 4) | a) no | ard selection procedure begins oregressors in the model ome regressors in the model | b) | | | | | 5) | a) sl | ple linear regression model Y = ope and intercept ror and slope | b) | $+\beta_1X + \epsilon$, β_0 and β_1 are
intercept and slope
intercept and error | | | | 6) | a) (| Itiple linear regressions, variand $(X'X)\sigma^2 \ (X'X)^{-1}X'\sigma^2$ | ce of
b)
d) | $(X'X)^{-1}\sigma^2$ | | | | 7) | a) λ_{i} c) λ_{i} | ondition number of $(X^{'}X)$ matri $\frac{nax}{nax} - \lambda_{min}$ $\frac{nax}{min}$ | | iven as $ rac{\lambda_{max}}{\lambda_{min}} + \lambda_{min} rac{\lambda_{min}}{\lambda_{max}}$ | | | | 8) | scalin
a) co | use unit length scaling for the regressors will be in the formovariance matrix lentity matrix | | ssor variables then X'X matrix of correlation matrix none of these | | | | 9) | conclua) a b) th c) th | coefficient of determination (R ² usion that good linear relation exists here is a lack of linear relationshere is a curvilinear relation one of these | | ear to 1 then it leads to the | | | | 10) | The hat matrix $H = X(X X)^{-1}X$ is a) symmetric and orthogonal b) symmetric and idempotent c) skew symmetric matrix d) identity matrix | | |-----|-----|---|----| | | 11) | The multicollinearity in linear regression concerns with a) The error terms b) The regressiors c) The response variable values d) The coefficient | | | | 12) | The LSE of β for the model $Y = X\beta + \epsilon$ can be written as a) $\beta + (X'X)^{-1}\epsilon$ b) $\beta + (X'X)\epsilon$ c) $\beta + X'\epsilon$ d) $\beta + (X'X)^{-1}X'\epsilon$ | | | | 13) | a) linear b) non-linear | | | | 14) | In usual notations, $var(\hat{Y}) =$ a) $H\sigma^2$ | | | Q.2 | A) | Answer the following questions. (Any Four) Define the coefficient of determination R² and adj. R². Derive the relation between them. Define Kth order polynomial regression model in one variable. Define condition number and condition indices of X'X matrix. Explain the procedure of computing λ, the parameter of power transformation. Define intrinsically model. Give an example. | 08 | | | B) | Write short notes. (Any Two) 1) Variance stabilizing transformation 2) Prediction interval for the model $Y = X\beta + \epsilon$ 3) Cubic spline and cubic-B spline | 06 | | Q.3 | A) | Answer the following questions. (Any Two) 1) Define residual. Obtain its mean and variance. 2) With usual notations, prove that R² is the square of correlation between Y and its predicted value Ŷ. 3) Show that any solution to normal equations minimizes the residual sum of squares. | 08 | | | B) | Answer the following questions. (Any One) 1) Describe cochrane-orkut method for parameter estimation in the presence of autocorrelation. 2) Propose an unbiased estimator of error variance σ² in the regression model and prove your claim. | 06 | | Q.4 | A) | Answer the following questions. (Any Two) 1) Describe polynomial models in one variable and two variables. 2) Define mallow's c_p statistic and explain how it is used for variable selection in regression. 3) Describe detection of multicollinearity using variance inflation factor. | 10 | | | B) | Answer the following questions. (Any One) 1) Define ridge estimator of regression coefficients. Obtain the mean square error of the ridge estimator. | 04 | ## **SLR-JS-381** - Justify whether the following are linear models or not. 2) - $Y = \propto +\beta X$ - ii) $Y = \propto \beta \in$ - iii) $Y = \beta_0 + \beta_1 X + \epsilon$ iv) $Y = \alpha + \frac{\beta}{X} + \epsilon$ Where $\epsilon \sim iid \ N(0, \sigma^2)$ #### **Answer the following questions. (Any Two)** Q.5 14 - State and prove Gauss-Mark off theorem. - Describe multiple linear regression model stating the assumptions, obtain 2) mean and variance of LSE $\hat{\beta}$ of β . - Define non-linear regression model. Discuss least squares method for 3) parameter estimation in non-linear regression. | Seat | | |------|--| | No. | | # M.Sc. (Part - II) (Semester - III) Examination, 2015 STATISTICS (Paper – XV) (Elective – II) Regression Analysis (New CGPA) Day and Date: Thursday, 26-11-2015 Max. Marks: 70 Time: 2.30 p.m. to 5.00 p.m. **Instructions**: 1) Attempt **five** questions. - 2) Q. No. (1) and Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. 3 to Q. No. 7. - 4) Figures to the **right** indicate **full** marks. - 1. A) Select the correct alternative: 5 - 1) The model $y = \theta_1 e^{\theta_2 x} + \epsilon$ is - a) linear regression model - b) non-linear regression model - c) polynomial regression model - d) none of these - 2) The sum of the residuals in any regression model with intercept β_0 is always - a) positive b) zero c) non-zero - d) one - 3) The variance of ith press residual is - a) $\frac{\sigma^2}{1-h_{ii}}$ b) σ^2 c) σ^2 (1 hii) d) $\frac{1-hii}{\sigma^2}$ - 4) The multicollinearity problem in a multiple linear regression is concern with - a) the error terms - b) response variable - c) the regressors - d) none of these - 5) Coefficient of determination R² is defined as - a) $\frac{SS_{Regression}}{SS_{Total}}$ - b) $\frac{SS_{residual}}{SS_{Total}}$ - c) $1 \frac{SS_{Regression}}{SS_{Total}}$ - d) None of these B) Fill in the blanks: 5 - 1) Any model that is linear in the unknown parameters is called ______ regression model. - 2) The hat matrix $H = x(x^1x^{-1})x^1$ is symmetric and _____ matrix. - 3) _____ test is used to test the significance individual regression coefficient in linear regression model. - 4) The regression model $y = \beta_0 + \beta_1 X + \beta_2 X^2$ is called polynomial regression model with _____ variable(s). - 5) $\operatorname{Cor}\left(\stackrel{\wedge}{\beta}\right) =$ ______, $\stackrel{\wedge}{\beta}$ is OLS estimator of β . - C) State whether the following statements are True or False: 4 - 1) OLS estimator of regression coefficient is BLUE. - 2) Condition indices of matrix x'x is defined as $\frac{\lambda_{max}}{\lambda_{min}} + \lambda j$. - 3) Auto correlation is concern with predictor variables. - 4) Residuals are useful for detecting outlier observation in x-space. - 2. a) Explain the terms: - 1) Variance Inflection Factor (VIF) - 2) Standardized and studentized residual. - b) Write short notes on the following: - 1) Variable selection problem. - 2) Box-cox power transformation. (6+8) - 3. a) Describe multiple linear regression model with K predictor variables. Write model in matrix form and state the basic assumptions. Derive the least square estimator of regression coefficients. - b) In usual notations, outline the procedure of testing a general linear hypothesis $T\beta = 0$. (7+7) - 4. a) Describe the problem of multicollinearity with suitable example. What are the effects of the same on least squares estimates of the regression coefficients. - b) Define Mallows' C_p-Statistic and derive the same. (7+7) - 5. a) Explain the following terms: - 1) Influential observation - 2) Mallows' class of estimators - 3) Breakdown point. - b) Define M-estimator and writedown the computational procedure of M-estimator. (6+8) - 6. a) Describe the least square method for parameter estimation in non-linear regression. Discuss the same for $y = \theta_1 e^{\theta_2 x} + \epsilon$. - b) Describe Cochrane-Orkut method for parameter estimation in the presence of autocorrelation. (7+7) - 7. a) Explain: - i) Kernal regression - ii) Locally weighted regression. - b) Discuss Durbin-Watson test for deteching auto correlation. (7+7) | Seat | Set | D | |------|-----|---| | No. | Set | Г | # M.Sc. (Semester - III) (CBCS) Examination March/April-2019 | | Statisti
REGRESSION | | |-----------|---|--| | • | ate: Thursday, 02-05-2019
:30 PM To 06:00 PM | Max. Marks: 70 | | Instructi | ons: 1) All questions are compulsory.2) Figures to the right indicate full | marks. | | | hoose the correct alternative from the
In classical linear regression, the distril
a) Poisson
c) Normal | - | | 2) | The hat matrix $X(X^{'}X)^{-1}X^{1}$ is
a) idempotent
c) both a and b | b) symmetric
d) neither (a) nor (b) | | 3) | The difference between observed value \hat{Y}_i is called a) slope c) error | e Y _i and corresponding fitted value b) intercept d) residual | | 4) | If distribution of Y is Poisson then variation is a) $Y' = Y$ c) $Y' = \frac{1}{Y}$ | ance stabilizing transformation used $ \begin{array}{ll} \text{b)} & \text{Y}^{'} = \sqrt{\text{Y}} \\ \text{d)} & \text{Y}^{'} = 109 \ \text{Y} \end{array} $ | | 5) | The sum of residuals weighted by correal 0 c) One | esponding fitted values is always b) Non-zero d) None of these | | 6) | If eigen values of matrix (X ¹ X) are 4.2, number is a) 14 c) 1.4 | 0.3, 1.0 and 0.03. Then conditionb) 140d) None of these | | 7) | The model $Y = \theta_1 e^{\theta_2 X} + \epsilon$ is
a) Polynomial
c) Non-linear | regression model. b) Linear d) None of these | | 8) | In usual notation, E[Cp/Bias = 0] =
a) p
c) $\frac{p(p+1)}{2}$ | b) $p-1$ d) None of these | | 9) | In a Linear model Y = Xβ+∈, with usual is a) uniquely obtained b) not uniquely obtained c) may or may not be uniquely obtained | | d) none of these | | 10) The theory of linear models provide the | basic of statistical | | |------|---|---|----| | | technique(s).
a) ANOVA
c) Both (a) and (b) | b) Regression analysisd) None of these | | | | 11) The LSE of β in multiple linear regressi written as $\hat{\beta} = \beta + R \in$, then $R = \underline{\hspace{1cm}}$ a) $(X'X)^{-1}$ | | | | | c) $(X'X)X^1$ | d) None of these | | | | 12) The joint points of pieces in polynomiala) Residualsc) Errors | fitting are usually called b) Knots d) None of these | | | | 13)Cochrane-Orkut method for parameter of . | estimation is used in the presence | | | | a) Multicollinearity c) Both (a) and (b) | b) Autocorrelationd) Neither (a) nor (b) | | | | 14)To test significance of individual regres regression model is used a) t test c) χ²test | | | | Q.2. | A) Answer any four of the following:- 1) Define general linear model. State to 2) Define hat Matrix H ad state its proposition. 3) Derive the relation between errors at 4) Define ridge estimator of regression. 5) Discuss sources of autocorrelation. | he assumption if any. perties. and residuals. a co-efficient. | 08 | | | B) Write short notes on any two of the f1) Normal probability Plot2) PRESS residuals3) Locally weighted regression | ollowing:- | 06 | | Q.3. | A) Answer any two of the following:- 1) Describe the detection of multicolling analysis of X'X. 2) Define standardized residual. Explain 3) Describe the test procedure of testing a multiple linear regression model. | in use of standardized residual. | 80 | | | B) Attempt any one of the following:- 1) In a linear model Y = Xβ+∈, show the estimable if and only if λ' belongs to 2) Discuss linearization method for paregression model. | row space of X'X | 06 | | Q.4 | A) Attempt any two of the following:- 1) Discuss backward elimination meth model. | od for selection of subset regression | 10 | | | 2) Discuss Durbin-Watson test for detellimitations? | ecting autocorrelation. What are its | | | | 3) Describe orthogonal polynomial to f variable. | it the polynomial model in one | | ### **SLR-ES-380** | B١ | Attempt | anv | one | of t | he | follo | wina:- | |----|----------|-------|---------|--------------|----|-------|-----------------------------------| | _ | ALLOHIDL | all y | \circ | V 1 t | | | / * * * 1 1 1 1 9 . | 04 - 1) Explain Kernel regression. - 2) Describe the Box-Cox method for transforming the response variable. #### Q.5 Attempt any two of the following:- 14 - a) Define multiple linear regression model. Obtain least squares estimator of β . Show that it is unbiased estimator β . - **b)** In usual notations, outline the procedure of testing general linear hypothesis $T\beta=0$ - c) Describe the problem of multicollinearity with suitable example. What are the effects of the same on LSE of regression coefficients? | Seat | | |------|--| | No. | | # M.Sc. (Part – II) (Semester – III) Examination, 2014 STATISTICS (Paper – XV) (Elective – II) Regression Analysis Day and Date: Wednesday, 30-4-2014 Total Marks: 70 Time: 3.00 p.m. to 6.00 p.m. Instructions: 1) Attempt five questions. - 2) Q. No. (1) and Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7). - 4) Figures to the **right** indicate **full** marks. - 1. A) Select correct alternative: - 1) Least squares estimator in the linear regression model is - a) unbiased but not BLUE - b) unbiased and BLUE c) biased - d) none of these - 2) Autocorrelation is concerned with - a) correlation among regressor variables - b) correlation among error terms - c) correlation among response variable and regressor variables - d) none of these - 3) If ρ is the simple correlation coefficient, the quantity ρ^2 is known as - a) coefficient of determination - b) coefficient of non-determination - c) coefficient of alienation - d) none of these - 4) The least squares estimator for the model $y = x\beta + \in$ can be written as - a) $\beta + (x'x)^{-1} \in$ b) $\beta + (x'x)^{-1}x' \in$ c) $\beta - (x'x)^{-1}x' \in$ - d) $\beta (x'x)^{-1}x' \in$ - 5) The Hat matrix $x(x'x)^{-1}x'$ is - a) symmetric b) idempotent c) both (a) and (b) d) neither (a) or (b) 2. | B) | Fill in the blanks: | |----|--| | | 1) The model $y = \beta_0 \ x^{\beta_1} \in \ \text{can be linearized by using}$ transformation. | | | 2) Multiple correlation is a measure of association of a variable with other variables. | | | 3) Significance of a individual regression coefficient can be tested bytest. | | | 4) The regression equation having two or more independent variables is called | | | 5) E (Cp/Bias = 0) =, Cp is Mallow's Cp – statistic. | | C) | State whether following statements are True or False : | | | 1) Variance of least squares estimator of β in linear regression model is $(x'x)^{-1}\sigma^2$. | | | 2) Any model not linear in the unknown parameters is called simple linear regression model. | | | 3) The sum of the residuals is any regression model with intercept (β_0) is always non-zero. | | | 4) Residuals are useful in detecting outliers in Y-shape. (5+5+4) | | a) | Answer the following: | | | i) Derive the relation between R^2 and adj R^2 . | | | ii) Explain press residual. (3+3 | | b) | Answer the following: | | | i) Describe a linear regression model with P-regressors. State all the | - i) Describe a linear regression model with P-regressors. State all the assumptions. - ii) Discuss the prediction interval for future observation in the context of multiple linear regression. (4+4) - 3. a) Define problem of variable selection in linear regression. Describe forward selection method for the same. - b) Derive the null distribution of sample correlation coefficient. (7+7) - 4. a) Define autocorrelation. Derive the Durbin-Watson test to determine the autocorrelation in errors. - b) Briefly explain the Box-Cox transformation method. Also discuss the computational process of λ . (7+7) - 5. a) What are the uses of residual plots? Write a note on normal probability plot and plot of residuals against fitted values. - b) What is multicolinearity? Describe different sources of multicolinearity. (7+7) - 6. a) Define residual and residual sum of squares. Propose an unbiased estimator of error variance σ^2 in the multiple linear regression and prove your claim. - b) Describe the test procedure for testing H_0 : $T\beta = 0$ in the context of multiple regression. (7+7) - 7. a) Discuss the least squares method for estimation of regression coefficients of linear and non-linear regression model. - b) Write notes on the following: - i) Variance inflation factor (VIF) ii) Malow's Cp-statistic. (7+7)