Class: B.Sc. III

Teacher's name: Shri. Raviraja T. Patil

		1.0		
 Unit I- Chapter I- General Properties of Nuclei and Nuclear Model Multiple Choice Ouestions (Correct answer is shown in red color) 				
1. The nucleus contains	3			
A) protons and electron	15			
B) protons and neutror	15			
C) neutrons and electro	ons			
D) neutrons and a-part	icles			
2. Isobars are the nuclic	les with same	but di	ifferent	
A) A-values, Z-values		E	3) A-values, N-values	
C) Z-values, A-values		Γ	D) N-values, Z-values	
3. Protons and neutron	s have intrinsic sp	pin equ	ual to	
A) ħ	B) 2ħ	C) $\frac{\hbar}{2}$	<u>^h</u> <u>2</u>	D) $\frac{\hbar}{2\pi}$
4. Nuclear binding ene	rgy is			
A) Mass defect x c ²				
B) Mass difference x c	2			
C) Mass defect / c ²				
D) Mass difference/ c ²				

5. Binding energy per nucl	leon is almost cons	stant for		
A) very light nuclides	des B) all nuclides			
C) very heavy nuclides		D) moderate mass nuclides		
6model is used to	o obtain semi-emp	irical mass formula.		
A) liquid drop model				
B) shell model				
C) a-particle model				
D) single particle model				
7. Magnetic moment (µ _n ,)	of neutron is			
A)zero	B) 2.793 μ _n	C) -1.913 μ _β	D) -1.913 μ _r	
8. Nuclear radius is propor	tional to			
A) A	B) $A^{1/3}$	C) $A^{2/3}$	D) Z	
9. Most stable nuclide is				
A) ¹⁶ / ₈ 0	B) ⁴¹ ₂₀ Ca	C) ²⁰⁶ ₈₂ <i>Pb</i>	D) ³ ₁ H	
10. One atomic mass unit	(amu) is equal to			
A) 931 g	B) 931 kg	C) 931Mev	D) 931eV	
Short Answer Question	S			

- 1. What are nucleons? Explain their intrinsic properties.
- 2. What is the shape and size of nucleus ?

- 3. Discuss different methods used to measure nuclear radius.
- 4. What is binding energy of a nucleus? Explain.
- 5.Write a note on 'magic numbers'
- 6. Discuss applications of semi-empirical mass formula.

• Long Answer Questions

1. What is binding energy curve? Discuss its nature and applications.

2.Explain liquid drop model for a nucleus.

3.Derive semi-empirical mass formula.

Unit I- Chapter-II- Particle Accelerators

• Multiple Choice Questions (Correct answer is shown in red color)

- 1. In particle accelerators..... particles are accelerated.
- A) positively charged
- B) negatively charged
- C) charged (+vely or -vely)
- D) neutral

2. In resonance orbital accelerators the frequency of revolution of particles is..... frequency of accelerating potential.

A) equal to the		B)greater than	
C)smaller than		D)not related to the	
3. Cyclotron is suitab	ble to accelerate		
A) neutrons	B) protons	C) electrons	D) positrons

4. Betatron is speciall	y designed to acce	lerate	
A) electrons		B) positrons	
C) both electrons and	d positrons	D) protons	
5. The period of revo	olution of particle in	n cyclotron is.	
A) independent of vel	locity of proton		
B) independent of ra-	dius of orbit		
C) independent of both	th velocity of partic	cle and radius of orbit	
D) proportional to the	ne energy of the pro	oton	
6. The first orbital res	sonance accelerator	r built was	
A) cyclotron		B synchrocyclotron	
C)) betatron)) betatron D proton synchrotron		
7. The phase stable or	rbit condition in sy	nchrocyclotron is that the	instantaneous P. D. across
dees isan	d		
A) zero, about to bec	come accelerating		
B) zero, about to bec	ome decelerating		
C) positive, very large	e		
D) negative, very lar	ge		
8accelerator	provides maximun	n energy particles.	
A) cyclotron	B) betatron	C) synchrocyclotron	D) proton synchrotron
9. The magnetic pole	-pieces are just abo	ove and below the donut tu	be in
A) cyclotron	B) betatron	C) synchrocyclotron	D) electron-synchrotron
10. Acceleration of	is not feas	ible in cyclotron	

A) protons B)electrons C)deuterons	D) α-articles
------------------------------------	---------------

11. A frequency modulated supply is employed in...

A) cyclotron B) synchrocyclotron C) betatron D) electon-synchrotron

• Short Answer Questions

- 1. What is the need of particle accelerates?
- 2. Explain the principle of betatron.
- 3. Obtain an expression for the maximum energy obtainable using betatron.
- 4. What are synchrotrons?
- 5. Explain the principle of electron-synchrotron with special reference to two-step acceleration

• Long Answer Questions

- 1. Explain theory, construction and working of a cyclotron.
- 2. Obtain an expression for maximum energy obtainable from a cyclotron. Discuss the limitations of a cyclotron.
- 3 Explain the phase-stable-orbit condition in details. 6. Discuss the construction, working and advantages of synchrocyclotron.
- 4 Discuss the construction, working of betatron.
- 5 Give construction and working of electron-synchrotron.
- 6. Discuss the principle of proton-synchrotron with a special reference to two step acceleration.
- 7. Explain construction and working of proton-syncrotron.

Unit II- Chapter I- Nuclear Detectors

• Multiple Choice Questions (Correct answer is shown in red color)

1. The following detector use the principle of ionization of gas by the energetic particle.

A) ionization chamber B)GM-counter C) cloud chamber D)all the above

2. The following detector do not use the principle of ionization of gas by energetic ionizing particle

A) semiconductor detector B) ionization chamber

C) GM-counter		D) cloud chamber		
3. Heart of Scintillation	1 counter is			
A) MgO-coating		B) photomultiplier tu	ıbe	
C) phosphor		D) light guide		
4. Cerenkov radiations phase velocity of light	are emitted by a partic in the same transparent	le moving with a velocit t	ty medium. the	
A) half		B) less than		
C) greater than		D) equal to		
5. The total number of	ion-pairs produced by	an ionizing particle depe	ends upon its	
A) mass	B) charge	C) initial energy	y D) final energy	
6. Quenching gas in Gl	M-tube is			
A)air	B)Argon	C) Bromine Vapour	D) Water Vapour	
7. Gas amplification in	ionization chamber is.			
A) initial energy	B) final energy	c) 10 ⁻³	D) 10 ⁻⁸	
8. Faithful counter is o	ne which producesf	or every particle passing	through the counter.	
A) one pulse	B)o	ne and only one pulse		
C)pulses one after another D) continuous discharge				
9. The electron multiplication is achieved in				
A)GM-Counter	B)p	hotomultiplier tube		
C)Scintillation detector	ntillation detector D) Cerenkov detector			
10. Gas amplification in GM-Counter is				
A) initial energy	B) final energy	y C) $\sim 10^3$	D) ~10 ⁸	
11. The sensitive period of cloud chamber is that when				

A) air in the chamber, (is clean i.e.) has no dust particles

- B) air in the chamber has no ions
- C) air in the chamber contains saturated vapour
- D) air in the chamber contains super saturated vapour

• Short Answer Questions

- 1. Explain the principle of ionization chamber.
- 2. What do you mean by quenching of GM-tube? Explain the self quenching mechanism.
- 3. How working potential for GM-tube is decided? 7. What is dead time of GM-counter? How a correction can be applied to it?
- 4. What is Scintillation detector?

• Long Answer Questions

- 1. Discuss construction and working of ionization chamber.
- 2. With the help of block diagram, explain the GM-counter.
- 3. Explain the construction and working of a Scintillation counter. What are advantages of it over GM-counter.
- 4. What do you mean by Cerenkov radiations? How this principle can be used to detect or count fast moving charged particle?
- 5. Explain the theory, construction and working of semiconductor detector. Compare the maximum count rate of semiconductor detector with other counters.
- 6. Explain variation of effective mass of an electron with a wave vector.
- 7. Explain how energy gap is formed between allowed energy bands.
- 8. Distinguish between metal, semiconductor and insulator on the basis of their energy band structure.

Unit II- Chapter II- Particle Physics

• Multiple Choice Questions (Correct answer is shown in red color)

1.force is not an interaction.

A) gravitational B) electromagnetic C) strong nuclear D) centrifugal

2.force is an interaction.

A) centrifugal	B) frictional	C) electromagn	netic D) viscous	
3 interactions are very strong, but have very short range.				
A) strong	B) electromagnetic	C) weak	D) gravitational	
4 interaction	ons are very weak, but have ve	ry large range.		
A) strong	B) electromagnetic	C) weak	D) gravitational	
5. Rest mass of .	bosons is non-zero.			
A) gluon	B) photon	C) weak (W)	D) graviton	
6are eleme	entary particles which are not c	constituted of quar	rks.	
A) Leptons	B) Mesons C) Ba	ryons	D) Nucleons	
7 eleme	entary particle are composites	of three up (u) a	nd down (d) quarks.	
A) Leptons	B) Mesons	C) Baryons	D) Nucleons	
8 eleme	entary particle are composites	of a quark (u or d) and an antiquark ($\overline{u} \& \overline{d}$)	
A) Leptons	B) Mesons	C) Pions	D) Hyperons	
9 are comp	osites of up (u), down (d) and	strange (s) quarks	3.	
A) Leptons	B) Nucleons	C) Mesons	D) Hyperons	
10 elementa	ry particles have spin half and	positive parity.		
A) Baryons	B) Pions	C) Kaons	D) Photons	
11. Elementary j	particles with zero spin and ne	gative parity are		
A) Baryons	B) Pions	C) Kaons	D) both (b) and (c)	
12. An abstract s	spin called isospin (T) is postu	lated to explain.		
A)singlets	B) bosons	C) multiplets	D) fermions	

13. Parity is not conserved in interactions.				
A) gravitational	B)electromagnetic	C)weak	D)strong	
14. Quarks have electronic charges.				
A)zero	B)One unit	of positive		
C) One unit of negative	D)fractiona	ıl		
15have not been observed physically				

A)Leptons	B) Quarks	C)Bosons	D)Hadrons
		- /	_ /

• Short Answer Questions

- 1. What are interactions and how they are mediated in different type of interactions.
- 2. Explain gravitational and electromagnetic interactions.
- 3. Discuss the weak and strong interactions.
- 4. What are hadrons? Discuss their properties.
- 5. Write a short note on symmetries in elementary particles. 8. Discuss 'the basic conservation laws'.
- 6. Explain the invariance of space inversion and also discuss in which interactions it is violated.

• Long Answer Questions

- 1. Give the classification of the fundamental particles.
- 2. Write a note on quark-model.