								SG - 167
Sea	t							Total No. of Pages : 3
B.Sc. (Part - III) (Semester - V) (CBSC) Examination, January - 2023 PHYSICS DSC - E2 : Quantum Mechanics (Paper - X) Sub. Code: 79678								
Day and Date : Wednesday, 04 - 01 - 2023 Time : 2 30 n m to 4 30 n m								
Instr	ruction	ns :	1) 2) 3) 4)	 All questions are compulsory. Use of scientific calculator is allowed. Figures to the right indicate full marks. Draw neat and labelled diagrams wherever necessary. 				
Q1)	Sele	ct the	e corr	rect alter	mative:			[8]
i) The de-Broglie hypothesis was experimentally prov							proved by	
a) Einstein's theory of relativity								
		b)	Planck's constant					
		c)	quantum mechanics					
	d) Davisson-Germer experiment							
	ii)	As per de Broglie hypothesis, linear momentum (P) is						
		a)	ħ/k	Z		b)	ħw	
		c)	hk			d)	ħk	
	iii)	The Eigen values of parity operator are						
		a)	0,+	1		b)	0,–1	
		c)	+1,	-1		d)	+1,+2	
	iv)	The wavelength of matter wave is independent of						t of
		a)	moi	mentum		b)	mass	
		c)	velo	ocity		d)	charge	

[16]

- v) The expectation value<x> of the position operator for a wave function ψ(x) tells you what?
 - a) The most likely place to find the particle
 - b) The least likely place to find the particle
 - c) The position of the particle actually is
 - d) The average value of the position you would get if you measured in multiple times
- vi) $[z, p_z] =$ ____. a) 0 b) 1 c) $i\hbar$ d) $-i\hbar$
- vii) Coeficient of transmission is defined as ratio of _____ to ____ current densities.
 - a) incident, transmitted
 - b) reflected, transmitted
 - c) transmitted, incident
 - d) incident, reflected
- viii) The energy spectrum of a particle in one dimensional rigid box has the nature of _____.
 - a) infinite sequence of discrete energy levels
 - b) infinite sequence of equidistance energy levels
 - c) exponentially increasing
 - d) exponentially decreasing
- Q2) Attempt any Two of the following
 - a) Derive Schrodinger's time dependent wave equation for one dimensional motion.
 - b) State and explain uncertainty relation and show that electrons do not exist in the nucleus.
 - c) Obtain the energy eigen values and normalized wave functions for motion

SG - 167

[16]

of a particle along x-axis in infinite potential well'

- Q3) Attempt any Four of the following
 - a) Show that, $[\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$
 - b) Prove the relation, $[L_z, L_+] = \hbar L_+$
 - c) Write note on Hamiltonian operator.
 - d) Write note on Degenerate states of the energy levels of the particle in three-dimensional rigid box.
 - e) Write note on orthogonal and normalization conditions of the wave functions.
 - f) State the conditions that the wave function should satisfy.

