Unit 1

- 1. What is the reaction in DNA replication catalyzed by DNA ligase? a) Addition of new nucleotides to the leading strand b) Addition of new nucleotide to the lagging strand c) Formation of a phosphodiester bond between the 3'-OH of one Okazaki fragment and the 5'-phosphate of the next on the lagging strand d) Base pairing of the template and the newly formed DNA strand 2. Which of the following enzymes remove supercoiling in replicating DNA ahead of the replication fork? a) DNA polymerases b) Helicases c) Primases d) Topoisomerases 3. DNA unwinding is done by _____ a) Ligase b) Helicase c) Topoisomerase d) Hexonuclease 4. Which of the following enzymes is the principal replication enzyme in E. coli? a) DNA polymerase I b) DNA polymerase II c) DNA polymerase III d) None of the mentioned 5. Which enzyme used to join bits of DNA? a) DNA polymerase b) DNA ligase c) Endonuclease d) Primase 6. During replication, Okazaki fragments elongate (a) leading strand towards the replication fork
 - 7 What is a made of multipation in E action

(b) lagging strand towards the replication fork

(c) leading strand away from the replication fork

(d) lagging strand away from the replication fork

- 7. What is a mode of replication in E.coli?
 - a) Intermediate
 - b) Dispersive

	c) Conservative			
	d) Semiconservative			
8.	What is the origin of	replication?		
	a) Particular site at w	which DNA replication sta	rts	
	b) Site which preven	ts initiation		
	c) Random location of	on the DNA		
	d) Site at which repli	cation terminated		
9.	Which of the followi	ng has the self-repairing r	nechanisms?	
	a) DNA and RNA			
	b) DNA, RNA and p	rotein		
	c) Only DNA			
	d) DNA and proteins			
10	. What is the function	of enzyme involved in ba	se excision repair?	
	a) Addition of correct	t base		
	b) Addition of correct	t nucleotide		
	c) Removal of incorr	ect base		
	d) Removal of phosp	hodiester bond		
11.	. Why recombinationa	l repair system is called d	ouble strand break repair?	
	a) Both strands are b	roken		
	b) One strand is brok	en		
	c) No strand is broke	n		
	d) Both strand act as	template		
12	. In SOS repair system	n cleavage of LexA and U	JmuD is mediated by	
	a) RecB			
	b) RecA			
	c) RecC			
	d) UvrA			
13	. The okazaki fragmer	its are present on	strand	
	-	ading lagging	all the above	
14	. Replication occurs in	phase		
	G1 <u>S</u>	G2 M		
15	. In replication of DNA	A synthesis of new strand	always occurs in the	direction
	5'-3' 3'-5' b	oth forward		
16	.DNA polymerase	removes RNA primer a	nd replaces DNA	
	I II III I			
	The constituted and is			
17	.The genetic code is _	<u></u>		

b) 2			
c) 3			
d) 4			
19. The initiation codon is	\$		
a) AUG			
b) UAA			
c) UAG			
d) UGA			
20. The termination codor	n is not	-	
a) AUG			
b) UAA			
c) UAG			
d) UGA			
21. How many t-RNAs are	e required to translate a	all 61 codons?	
a) 31			
b) 32			
c) 30			
d) 29			
22. Which position of a co	odon is said to wobble?	?	
a) First			
b) Second			
c) Third			
d) Fourth			
23. The genetic code trans	lated the language of _		
a) Proteins into that of	RNA		
b) Amino acids into th	at of RNA		
c) RNA into that of pro	oteins		
d) RNA into that of DI	NA		
24. Wobble hypothesis wa	as first proposed by		
a) Nirenberg			
b) Watson and Crick			
c) Watson			
d) Crick			
25 . The operon hypothesis Watson and Crick	_	Jacob and Monod	niren hero

z y	a	e responsible for the synall the above			ermease enzyme	
27. The structural gen	ne z are i	responsible for the synt	tnesis	or enzyme		
thiogalact	toside	galactoside permease	:	transacetylase	b-galactosidase	
28. The sequence of	the struc	tural genes in lac operc	on are	• • • • • • • • • • • • • • • • • • • •		
lacA-lacZ-lac	Υ	lacZ-lacA-lacY				
lacZ-lacY-lac	εA	lacA-lacY-lacZ				
29. Lac operon will b	e turned	on when				
Lactose is les	s than gl	ucose				
Lactose is les	_					
Glucose is en	ough in	the medium				
Lactose is mo	_					
30. Lac operon is an	example	of				
Only positive	regulati	on				
Only negative	Only negative regulation					
both positive	both positive and negative regulation regulation					
sometimes po	ositive so	ometime negative				
-		-				
		Unit 2	<u>2</u>			
1. Synthesis of R	NA from	n DNA template is called	d			
a) Transcripti		b) Translation		c) Transition	d)	
Transversion		,		,	,	
2 Simple protei	na ana na	lyman of				

2. Simple proteins are polymers of _____ a) Sugars c) Fatty acids b) Amino Acids d) Globular proteins 3. Methionine is specified by initiation codon______to begin polypeptide chain synthesis. a) AUĞ b) UGA c) AAA d) AGU 4. The enzyme required for transcription is_____ a) Restriction enzyme b) DNA polymerase c) RNA polymerase d) RNAase 5. ______ is a process in which RNA is synthesized from DNA template.

Tra	a) Transcription insformation	b) Translation	c) Transition	d)			
6.	Individual amino acid	during protein synthes	sis specified bycodo	ons.			
	a) 3	b) 20	c) 64	d) 61			
7.	Translation is the	******					
	a) Synthesis of protein	from a mRNA	b) Synthesis of DNA	from a mRNA			
	c) Synthesis of RNA fi	om a mRNA	d) Synthesis of pro	tein from a DNA			
8.	The process of formati	on of RNA is known a	uS				
	a) Replication						
	b) DNA repair						
	c) Translation						
	d) Transcription						
9.	Transcription occurs						
	a) unidirectionally						
	b) bidirectionally.						
10.	Which is INCORREC	Γ statement about the t	ranscription unit?				
	a) It is a transcribed se	gment of DNA					
	b) Eukaryotes have monocistronic transcription unit						
	c) Prokaryotes also have	ve a monocistronic tran	nscription unit				
	d) Immediate product of	of transcription is prim	ary transcript				
11.	Which of the following	g is TRUE for the RNA	A polymerase activity?				
	a) DNA dependent DNA synthesis						
	b) Direct repair						
	c) DNA dependent RN	A synthesis					
	d) RNA dependent RN	A synthesis					
	View Answer						
12.	Who discovered RNA	polymerase?					
	a) Samuel B. Weiss						
	b) Nirenberg						
	c) Watson and Crick						
	d) Darwin						
	View Answer						
13.	. Which of the following ensure stable binding of RNA polymerase at the promoter site?						
	a) DNA photolyase						
	b) Sigma factor						
	c) DNA glycosylase						

(d) RecA
,	View Answer
14.	What is the work of the sigma factor in transcription?
ä	a) Helicase action
1	b) Transcription initiation
(c) Transcription elongation
(d) Transcription termination
15.	factor is used for promoter recognition
ä	a) Sigma 32
1	b) Sigma 70
(c) Sigma 60
(d) Sigma 40
7	View Answer
16.	base pairs of DNA is transcribed by RNA polymerase in one go.
ä	a) 5-6
1	b) 3
(c) 4
(d) 7-8
17.	Which of the following transcription termination technique has RNA dependent ATPase
ä	activity?
ä	a) Intercalating agents
1	b) Rho dependent
(c) Rho independent
(d) Rifampein
18. 3	Shine-Dalgarno sequence is present in the
ä	a) hnRNA
1	b) mRNA
(c) tRNA
(d) siRNA
19. ′	The first amino acid incorporated at the N-terminus of polypeptide is
ä	a) methionine
1	b) cysteine
(c) tryptophan
(d) valine.
20.	Translation is the
,	Synthesis of DNA from a mRNA template

	Synthesis of protein from a mRNA template							
	Synthesis of R	ynthesis of RNA from a mRNA template						
	Synthesis of R	NA from	n a DN	A template				
21.	Translation oc	curs in.						
	Nucleus	Cytopla	asm	Nucleolus	Lysos	some		
22.	During transla	tion, pro	otein ar	e synthesized	1			
	By ribosome u	ising the	inform	nation on DN	A			
	By lysosome u	ising the	inforn	nation on DN	ΙA			
	By ribosome u	ising the	inform	nation on mR	NA			
	By ribosome u	ising the	inform	nation on tRN	NΑ			
23.	molecul	e serves	as an a	daptor mole	cule durii	ng prote	in synthesis	
	mRNA	tRNA		rRNA	mRN	Aand tR	NA	
24.	In prokaryotes	s, the rib	osomal	binding site	on mRN	A is cal	led	
	Hogness seque	ence	Shine-	dalgarno seq	uence	N-form	nyl methionine all	of these
25.	is the en	ergy ric	h mole	cule requires	for initia	tion of	translation	
	ATP GTP	CTP	AMP					
26.	In eukaryotes,	translat	ion is ii	nitiated by bi	nding of	riboson	ne to the	
	Pribnows box		Hogne	ss box	5'cap		poly A tail	
27.	The 70S ribose	ome has	• • • • • • • •	binding	sites of a	minoacy	ıl RNA	
	A site	P site		E site	all the	above		
28.	In translation 1	process,	ribosoı	ne moves on	mRNA i	in	direction.	
	5'-3'	3'-5'		reverse	both a	and b		
29.	Which of the f	following	g is not	termination	codon	••••		
	UAA	AUG		UAG	UGA			
30.	In splicing	are	remov	ed to form m	ature mF	RNA.		
	Exon	Intron		nrimore	0001101	200		

1.	Restriction endonuclease producecu	uts.
	a) External b) internal	c) internal and external d)at one end
2.	Cloning vector are DNA molecules that c	an carry
	a) Foreign DNA fragment	b) Chromosome
	c) Foreign protein	d) Enzyme
3.	Select the wrong statement about plasmid	s?
	a) It is extrachromosomal	b) It is double stranded
	c) Its replication depends upon host cell	d) It is closed and circular DNA
4.	What does PCR stand for?	
	a) Polymerase Chronic Reagent	b)Principle Chorionic Reliability
	c)Polymerase Chain Reaction	d)Probably Cannot React
5.	A method used to make millions of copies	s of a specific segment of DNA from a very
	small amount of DNA.	
	a) DNA Fingerprint	b) Electrophoresis
	c) Polymerase Chain Reaction	d)Restriction Enzyme
6.	Southern blotting is	
	a) Attachment of probes to DNA fragmen	ts
	b) Transfer of DNA fragments from electrons	
	c) Comparison of DNA fragments to two	-
	d) Transfer of DNA fragments to electrop	
7.	-	_
/.	•	
	a) It is a DNA sequencing technique.	b) It is a DNA degradation technique
	c) It is a DNA amplification technique	a) All of the above
Q	Denaturation is the process of	
ο.	-	
		b) Heating between 40 to 60°C
	,	d) None of the above
9.	E	
		b) number of sequence
	c) DNA fragments	d) RNA sequences
	Restriction enzyme is known as	
	a) Molecular Scissor b) Molecular K	nive c) Molecular cutter d) All
	the above	
11.	. Plasmids replicate independently due to the	ne presence of an
	origin of replication vector	markers polylinker site
12.	2. The lambda phage consists of	head
	circular rectangular icosahedral	triangular
13	The recognition site consists ofb	
15.	_	ase pans.
4.4		
14.	The DNA that carries the desired gene to	
	Template cloning vector bacteria	
15.	5. In nomenclature of restriction enzyme	
	Genus Species subspecies a	all of these

16.	The single strand	led extensions	of lambda	DNA are know	vn as
	complementary s	site cos en	ds ss D	NA both	a and b
17.	Foreign DNA up	oto kb size	can cloned	in cosmid vec	tors
	5 70	45	50		
18.	A phagemid is a	hybrid of a			
	plasmid and f1 pl	nage DNA	plas	mid and cosm	id two plasmids
	plasmid and bact	teria			
19.	The rDNA can b	e delivered in	to bacterial	cell by	•••
	Transformation	transduction	electropora	ution all o	f these
20.	In the process of	transformatio	on the comp	etent cell can i	ntake rDNA with the
	size				
	5-15kbp	5bp	45kbs	20 kbp	
21.	To introduce rDN	A into E.coli c	ells rDNA is	treated with	••••
	CaCl ₂ NaCl	Calciu	m carbonate	all th	e above
22.	In electroporation	method to intro	oduce rDNA	into E.coli cell	lskilovolt/cm
	electric pulse is ge	enerate betweer	n elevtrodes i	for 4.6 milliseco	onds.
	2.5	8.5	5 12		
23.	Northern blotting	is introduced b	y		
	Ed Southern	Nothern	Alwine	Wats	son
24.	The mRNA presen	nt in the agaros	e gel are trar	sformed to	filter paper by the
	blotting method.	Č	C		1 1 7
	Nitrocellulose	Cellulase	Whatmann	aminobenzy	loxymethyl
25.	Northern blotting			•	•
	DNA	Protein	RNA	Gene	
26					lose filter is called as
20.	blotting.		iropnoresea ;	ser to ma occina	iose inter is canca as
	•	northern	western	all the abov	ρ
27	The gel used in we			an the abov	C
21.	SDS-PAGE	_		Notivo	
20		· ·	Starcii	Nauve	
<i>2</i> 0.	The ideal cloning			1:	all the above
20	Origin of replicati			linker site	all the above
29.	Thermostable DN				A 1 TTT
20	Taq polymerase			merase DN	A polymerase III
<i>3</i> 0.	Amp ^r isof	_			
	Origin of replicati	on marker	r poly	linker site	vector