SG-157 Total No. of Pages : 3

Total Marks: 40

B.Sc. (Part-III) (Semester - V) (CBCS) Examination, January - 2023 PHYSICS

> DSE - E1 : Mathematical Physics (Paper - IX) Sub. Code: 79677

Day and Date : Tuesday, 03 - 01 - 2023

Time : 2.30 p.m. to 4.30 p.m.

Instructions : 1) All questions are compulsory.

2) Use of scientific calculator is allowed.

Q1) Choose the correct alternatives.

a) Every partial differential equation involves at least_____independent variables.

i)	1	ii)	2
ii)	3	iv)	4

b) The three-dimensional Laplace equation is given by_____.

i)	$\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} + \frac{\partial^3 u}{\partial z^3} = 0$	ii)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$
iii)	$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	iv)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$

- c) The method of separation of variables converts the given partial differential equation into______Differential equation.
 - i) partial ii) partial ordinary
 - iii) ordinary iv) none of these
- d) Legendre's differential equation has general solution in the form_____.
 - i) $y = A P_n(x)$ ii) $y = B Q_n(x)$ iii) $y = A P_n(x) + B Q_n(x)$ iv) $y = A P_n(x) - B Q_n(x)$

Seat No.

[8]

SG-157

[16]

e) Which of the following is false?

iii) $\beta(3, 4) = \beta(4, 3)$ iv) $\boxed{n} = n!$ f) $erf(x) + erf_c(x) = _$. i) 1 ii) 2 iii) 0 iv) none of these g) The argument of complex number $-1 - \sqrt{3i}$ is i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	
f) $erf(x) + erf_c(x) =$ i) 1 ii) 2 iii) 0 iv) none of these g) The argument of complex number $-1 - \sqrt{3i}$ is i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	
i) 1 ii) 2 iii) 0 iv) none of these g) The argument of complex number $-1 - \sqrt{3i}$ is i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	
iii) 0 iv) none of these g) The argument of complex number $-1 - \sqrt{3i}$ is i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	
g) The argument of complex number $-1 - \sqrt{3i}$ is i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	
i) $\frac{\pi}{3}$ ii) $\frac{2\pi}{3}$	

iii)
$$\frac{4\pi}{3}$$
 iv) $\frac{5\pi}{6}$

h) To solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ by method of separation of variables, we assume the solution in the form u(x, y, z) =_____. i) X(x) Y(y) Z(t) ii) X(x) Y(y)

- iii) X(x) Y(y) Z(z) iv) X(x) Z(z)
- Q2) Attempt any two of the following.
 - a) Obtain the solution of wave equation in two dimensions using variable separable method.
 - b) What are properties of beta function? Show that

$$\beta(m,n) = 2 \int_0^{\frac{\pi}{2}} \sin^{2m-1} x \cdot \cos^{2n-1} x \, dx$$

c) If z_1 and z_2 are two complex numbers then explain $z_1 \times z_2$ and $\frac{z_1}{z_2}$ by geometry.

- Q3) Attempt any four of the following.
 - a) Define Order and Degree of partial differential equation. State two examples.
 - b) Explain in brief the method of solving following second order partial

differential equation, $\frac{\partial^2 u}{dx^2} = \frac{1}{k} \frac{\partial x}{dt}$

- c) Define:
 - i) Ordinary point.
 - ii) regular singularities and
 - iii) irregular singularities of the second order differential equation.
 - iv) Find the singularities of the following differential equation.

1)
$$2x^2 \frac{d^2 y}{dx^2} + 7x(x+1)\frac{dy}{dx} + 3y = 0.$$

2)
$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + x^2 - 4 = 0$$
.

- v) Define Gamma Function. Prove any two properties of it.
- vi) Represent the complex number $Z_1 \times Z_2$ geometrically for two complex number Z_1 and Z_2 .

\$ \$ \$

-3-

SG-157 [16]