Rayat Shikshan Sanstha's

Rajarshi Chhatarapati Shahu College, Kolhapur

Department of Physics

Question Bank

Paper XI- DSE-E3 Classical Mechanics and Classical Mechanics

Class: B.Sc. III Teacher's name: Shri. R. T. Patil Unit I- Chapter I- Lagrangian Formulation • Multiple Choice Questions (Correct answer is shown in red color) 1) A constraint is aon the freedom of motion of a system of particles. a) restriction c)further information b) condition d) binding 2) The principal of virtual work deals only the cases of b) dynamics d) kinetics a) static c) kinematics 3) A rigid body moving freely in space has -----degrees of freedom. a) 1 b) 6 c) 9 d) 3 4) D' Alembertz principle is..... a) $\sum_i (F_i^a - p_i) \delta r_i = 0$ b) $\sum_i (F_i^a - \dot{p}_i) \delta r_i = 0$ d) $\sum_{i} (F_i^a + \dot{p}_i) \delta r_i = 0$ c) $\sum_{i} (F_i^a + p_i) \delta r_i$ 5) When constraints are introduced into a system, the number of degrees of freedom is..... a) increased b) reduced c) changes d) remains same 6) The Lagrangian function L is given as c) L = V - Ta) L= T+V b) L = T - Vd) L=V/T 7) The constraints involved in the motion of a particle placed on the surface of sphere is a) holonomic b) non-holonomic c) rheonomous d) both a and c 8) If a bead sliding on along uniformly rotating wire in a force free space then at any

moment, potential energy of a bead is.....

a) zero b) nonzero

d) 6N

- 9) Generalized co ordinates are
- a) independent of each other
- b) dependent on each other
- c) Cartesian coordinates
- d) cylindrical coordinates
- 10) If the constraints are independent of time then they are.....constraints.
- a) rheonomous b) holonomic
- c) nonholonomic d) scleronomous
- 11) Lagrangian equation is given as.....

a)
$$\frac{\partial L}{\partial q_i} + \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0$$

b) $\frac{\partial L}{\partial q_i} - \frac{\partial L}{\partial \dot{q}_i} = 0$
c) $-\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0$
d) $\frac{\partial f}{\partial y_i} + \frac{\partial f}{\partial \dot{y}_i} = 0$

12) In a formulation the equations of motion are written without any specific reference to the co-ordinate system used.

a) Galilean
b) Newtonian
c) Lagrangian
d) Lorentz
13) For a system of N particles moving independent of each other the number of degrees of freedom is

c) 3N

a) N b) 2N

14) The generalized coordinates

a)have dimensions of length

b) have dimensions of velocities

c) can be divided into the convenient group of three

d) determine the configuration of the system

15) The principle of virtual work is expressed by the equation

a) $\sum_{i} \vec{F}_{i} \cdot \delta \vec{r}_{i} = 0$	b) $\sum_i \vec{F}_i^{(a)} \cdot \delta \vec{r}_i = 0$	c) $\sum_i \vec{f_i} \cdot \delta \vec{r_i} = 0$	d) $\sum_i \vec{F}_i = 0$	
16) The Atwood machin	16) The Atwood machine may be regarded as an example of a conservative system with			
a)holonomic, rheonomou	a)holonomic, rheonomous constraint			
b) holonomic, scleronomous constraint				
c) nonholonomic, rheon	omous constraint			
d) nonholonomic, sclero	onomous constraint			
17) For a particle moving	g in free space its	.energy is zero		
a) Kinetic	b) potential	c) total	d) rest mass	
18)constraints are i	ndependent of time			
a) holonomic	b) nonholonomic	c) scheronomous	d) rheoenomous	
19)The generalized coor	dinates for motion of a partic	cle moving on the surfa	ce of a sphere of	
radius r				
a) r and θ	b) r and φ	c) θ and ϕ	d) zero and ϕ	
20)The Lagrangian equations of motion for a system are equivalent to equations of motion.				
a) Newton's	b) Laplace	c) Poisson	d) Maxwell's	
Short Answer Questions				
1. What are constraints? Explain holonomic and non-holonomic constraints.				
2. Explain scleronomous and rheonomous constraints.				
3. Explain the term degrees of freedom.				
4. Explain the term 'generalised coordinates'. Why they are needed?				
5. Write a note on 'Principle of virtual work'				
6. Obtain D'Alembert's principle in generalized coordinates.				
7. Write a note on 'Atwood's Machine'.				

8. Derive an equation of motion for a bead sliding on a uniformly rotating wire.

• Long Answer Questions

- 1. Obtain Lagrange's equations from D'Alembert's principle.
- 2. Using Lagrangian formulation, obtain an equation of motion for a particle moving in a free space.
- Using Lagrange's equation, obtain an experssion for acceleration in the Atwood's machine.

Unit I- Chapter II- Techniques of Calculus of Variation

• Multiple Choice Questions (Correct answer is shown in red color)

1) The shortest distance between two points in a plane is along a.....passing through the two points.

a) curve		b) straight line		
c) normal to the plane		d) parallel to the plane		
2) Hamilton's principal isprinciple.				
a) an integral		b) a differential		
c) an algebraic		d) a linear		
3) Analytically Hamilton's principle can be represented as				
a) $\int_{t_1}^{t_2} L dt \neq extremum$		b) $\int_{t_1}^{t_2} L dt = \infty$		
c) $\int_{t_1}^{t_2} L dt = extremum$		d) $\int_{t_1}^{t_2} L dt = 0$		
4) The Hamiltonian H is given as				
a) H = L+V	b) H = L-V	c) $H = T + V$	d) H =T-V	
5) The system is called as monogenic, if all the forces of a system are generated from				
function.				
a) single	b)double	c) triple	d) fourth	
		0		

6) If all forces of a system are generated from a single function, the system is called..... system

a) conservative b) monogenic

7) Hamilton's principle is given as.

a)
$$I = \int_{t_1}^{t_2} L dt$$
 b) $I = \int_{t_1}^{t_2} \frac{1}{L} dt$ c) $I = \int_{t_1}^{t_2} L^2 dt$ d) $I = \int_{t_1}^{t_2} L^3 dt$

8) The Euler-Lagrange's equations are given by.....

a)
$$\frac{\partial L}{\partial q_i} + \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right)$$

b) $\frac{\partial L}{\partial q_i} - \frac{\partial L}{\partial \dot{q}_i} = 0$
c) $\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0$
d) $\frac{\partial L}{\partial \dot{q}_i} + \frac{\partial L}{\partial q_i} = 0$

9) In Brachistochrome problem, the equations of motion of the a particle is.....

a) $x = a(1 - \cos\theta), y = a(\theta - \sin\theta)$

b)
$$(x = a(\theta - \cos\theta), y = a(1 - \sin\theta)$$

$$c)x = (1 - cos\theta), y = (1 - sin\theta)$$

d)
$$x = a(1 + \cos\theta), y = a(1 + \sin\theta)$$

10) In Brachistochrome problem, the path of the particle is.....

a) parabola b) circle c) straight line d) cycloid

11) In variational principle the line integral of some function between two end points is.....

a) zero	b)infinite	c)stationery	d)one
12)The n-dimens	ional space is called pace		
a) phase	b) configuration	c) real	d) solar

13) The equation of motion of simple pendulum is

a) $\ddot{\theta} + \frac{g}{l}\sin\theta = 0$ b) $\ddot{\theta} - \frac{g}{l}\sin\theta = 0$ c) $\ddot{\theta} + \frac{g}{l} = 0$ d) $\ddot{\theta} + \frac{g}{l}\sin\theta = 1$

• Short Answer Questions

- 1. State and explain Hamilton's principle.
- 2. Show that shortest distance between two points in a plane is along a straight line.
- 3. Write a note on 'Brachistochrone problem'.

4. Show that the path of a particle moving under constant conservative force field in least time is cycloid.

• Long Answer Questions

- 1. Deduce Hamilton's principle from D'Alembert's principle.
- 2. Derive Lagrange's equations of motion from Hamilton's principle.

Unit II- Chapter I- Special theory of Relativity

- Multiple Choice Questions (Correct answer is shown in red color)
- 1) The velocity of light in free space is
- a) Constant b) Zero c) Infinite d) Relative 2) In Michelson Morley interferometer, a beam of light from a monochromatic source falls upon_____ glass plate a) semi silvered b) silvered c) plane d)opaque 3) In Galilean relativity the transformation equation for x coordinate from S to S' is.... a)x' = vt - x b) $x' = x - vt/c^2$ c) $x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$ d) x' = x - vt4) The wavelength of matter wave is independent of ______ a) mass b) velocity c) momentum d)charge 5) The accelerated frames are _____ a) inertial b) non-inertial c) stationary d) moving 6) The special theory of relativity was developed by_____ b) Newton d)Galileo a) Einstein c) Lorentz 7) In velocity addition theorem u =_____

a)
$$\frac{u'+v}{\frac{u'v}{c^2}}$$
 b) $\frac{u'+v}{1+\frac{u'v}{c^2}}$ c) $u'+v$ d) u'

8) Einstein's first postulate in special theory of relativity is true in _____ frame of references.

a) inertial	b) accelerated	c) non inertial	d) circular
9) The inertial frame of reference isframe of reference			
a) an accelerated	b) an unaccelerated	c) a rotating	d) an oscillating
10) Lorentz transformation reduces to Galilian transformations when			
a) V>>C	b) V< <c< td=""><td>c) V=C</td><td>d) V= 1/C</td></c<>	c) V=C	d) V= 1/C
11) For the moving o	bserver, the time interval a	ppears to be	
a) remains constant	b) increase to infini	ity c) lengthened	d) shortened
12) The Lorentz transformation equation of time shows that the space and time are not			
two entities			
a) related	b) equivalent	c) independent	d)dependent
13) For moving observer length appears to be			
a) remains constant		b)	increase to infinity
c) dialated		d)	contracted
14) Who formulated first the classical theory of relativity?			
a) Einstein	b) Newton	c) Lorentz	d) Galileo
15) The non- inertial f	frame of reference is	frame of refe	erence
a) an accelerated		b) an unaccelerated	1
c) a rotating		d) an oscillating	
16) Mass increases with velocity by the relation			

a)
$$m = \frac{m_o}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 b) $m = m_o \sqrt{1 - \frac{v^2}{c^2}}$ c) $m = \frac{m_o}{1 - \frac{v^2}{c^2}}$ d) $m = \frac{m_o}{1 - \frac{vt}{c^2}}$

17)According to the principle of invariance the equations of motion of a particle would be exactly the same in all.... frames of reference.

a) inertial	b) non-inertial	c) rotating	d) accelerated
18) The purpose of Michelson-Morley experiment was			
a) To measure variable speed of light through ether:			
b) To calculate absolute velocity of earth through ether.			
c) To verify the length contraction in the direction of motion.			
d) To verify the time dilation			
19) According to Einstein, velocity of light in free space is			
a) dependent of the direction of propagation b) variable			
c) a constant		d) infinite	
20) The body coordinate system is aframe of reference.			
a) non inertial	b) i	nertial	
c)both inertial or non ine	ertial d) e	ither inertial or non i	nertial

• Short Answer Questions

- 1. State and explain the Einstein's postulates of the special theory of relativity.
- 2. Deduce the expressions for variation of length with velocity.
- 3. With usual notations derive the expression m $m = \frac{m_o}{\sqrt{1 \frac{v^2}{c^2}}}$.
- 4. Explain the concept of time dilation.
- 5. Derive the mass energy relation.
- 6. Write notes on Inertial frame of reference.
- 7. Write notes on Non-inertial frame of reference.
- 8. Write notes on Galilean transformations.

9. Write notes on The ether hypothesis

• Long Answer Questions

- 1. Describe the Michelson-Morley experiment. How the negative result is interpreted?
- Write down the Lorentz transformation equations. Derive them on the basis of special theory of relativity.
- 3. Derive the formula for the relativistic addition of velocities.

Unit II- Chapter II- Charged Particle Dynamics

• Multiple Choice Questions (Correct answer is shown in red color)

1) The Poisson's equation is represented as....

a)
$$\vec{\nabla} \cdot \vec{E} = 0$$
 b) $\vec{\nabla} \cdot \vec{V} = \frac{\rho}{\epsilon_o}$ c) $\nabla^2 V = -\frac{\rho}{\epsilon_o}$ d) $\nabla^2 \vec{E} = 0$

2) The Laplace's equation is represented as....

a) $\vec{\nabla}\vec{V} = 0$ b) $\nabla^2 V = 0$ c) $\vec{\nabla} \times \vec{V} = 0$ d) $\vec{\nabla} \cdot \vec{V} = 0$

3) The force acting on a particle with charge q in electric field E is...

a) $\vec{F} = \frac{q}{\vec{E}}$ b) $\vec{F} = \frac{\vec{E}}{q}$ c) $\vec{F} = q \cdot \vec{E}$ d) $\vec{F} = q \cdot E^2$

4) The trajectory of a charged particle moving in uniform electric field \vec{E} is..

a) straight lineb) circlec) eclipsed) parabola5) The solution of Laplace's equation in one dimension is.....a) straight lineb) circlec) eclipsed) parabola6) The path followed by a charged particle moving uniform magnetic field \vec{B} is.....a) parabolicb) hyperbolicc) circulard) elliptical

7) The force on a charged particle moving in a magnetic field \vec{B} is \vec{F}

a) $q^2(\vec{v} \cdot \vec{B})$ b) $q(\vec{v} \cdot B^2)$ c) $q(v^2 \cdot \vec{B})$ d) $q(\vec{v} \cdot \vec{B})$

8) Electric field intensity $\overrightarrow{\sqrt{z}}$ in terms of potential v is E^2

a) $\vec{\nabla} v$ b) $\nabla^2 v$ c) $\vec{\nabla} \times \vec{v}$ d) $-\vec{\nabla} v$

9) A charged particle moving in crossed uniform electric and magnetic fields traces.....path.

a) circular	b) cycloid	c) parabo	olic d) straight line
10) Lorentz force is given by \vec{F}			
a) $q\left[\vec{v} \times \left(\vec{B} + \vec{E}\right)\right]$		b) $q[\vec{B} + (\vec{v}$	$\times \vec{E}$)]
c) $q\left[\vec{B} + \left(\vec{E} \times \vec{v}\right)\right]$		d) $q[\vec{E} + (\vec{v} \times$	(\vec{B})]
11) The frequency ω of a charged particle moving in uniform. magnetic field B is			
a) $\frac{q}{mB}$ b) $\frac{q}{r}$	B n	c) $\frac{mB}{q}$	d) $\frac{m}{qB}$
12) The Frequency of charged particle moving in uniform magnetic field is termed as			
frequency			
a) Analogour		b) Cyclic	
c) Cyclotron		d) Vibrating	
13) Laplace's equation is valid in			
a) charge free region	b) uniform	m charge distribu	ition
c) non uniform charge distribution	tion d) polariz	zed charges	
14) Poisson's equation is valid in			
a)Absence of charges	b)presence	e of charges	
c)magnetic field	d) non-po	olarized charges	
Long Answer Questions			

1. Derive Poison's and Laplace's equations.

- 2. Discus motion of a charged particle moving in uniform electric field.
- 3. Show that path followed by a charged particle moving in uniform magnetic field is a circle.
- 4. State Laplace equation and Obtain its solution in one dimension.
- Discuss motion of charged particle moving in crossed uniform electric and magnetic fields.