Rayat Shikshan Sanstha's

Rajarshi Chhatarapati Shahu College, Kolhapur

Department of Physics

Question Bank

Paper IX- DSE-E1 Mathematical Physics

Class: B.Sc. III

Teacher's name: Dr. A. R. Patil

Unit I- Chapter I- Partial Differential Equations					
Multiple Choice Questions (Correct answer is shown in red color)					
1) Every partia	l differential equation invo	olves atleas	st independ	ent variable	28.
a)1	b) 2		c)3	d) 4	
2) The order a	nd degree of the differenti	al equatior	$h \frac{\partial^2 z}{\partial x^2} = k \frac{\partial z}{\partial y}$ is.		
a) 1,2	b) 1,1		c) 2,1	d) 2,2	
3) The equatio	3) The equation $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 1$ is calledequation.				
a) Laplace	b) Non-linear	c) Line	ar	d) Heat	
4) Which of th	e following is called Lapla	ice equatio	n?		
a) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial u}{\partial t}$ b) $\frac{\partial^2 u}{\partial x^2} = C^2 \frac{\partial u}{\partial t}$					
c) $\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$			d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$		
5) The three dimensional Laplace equation is given by					
a) $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} + \frac{\partial^3 u}{\partial z^3} = 0$			b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$		
c) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} + = 0$			d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial t^2}$		
6) To solve the equation $\frac{\partial^2 z}{\partial x^2} = k \frac{\partial z}{\partial y}$ by method of variables we assume the solution in the form					
a) $u(x, t) = X(x) Y(y)$			b) $u(x, t) = X(x) T(1)$		
c) $u(x, t) = X(x) / T(t)$			d) u (x, t)=kX (x) T(0)		

7) The wave equation is of the form				
a) $\frac{\partial^2 u}{\partial x^2} = \frac{1}{C^2} \frac{\partial u}{\partial t}$	b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$			
c) $\frac{\partial^2 u}{\partial x^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2}$	d) $\frac{\partial^2 u}{\partial x^2} = k \frac{\partial u}{\partial y}$			
8) Which of the following is not linear partial different	ential equation?			
a) $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 0$	b) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$			
c) $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = 0$	d) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$			
9) The method of separation of variables converts the	ne give differential equation into differential			
equation.				
a) partial				
b) partial ordinary				
c) ordinary				
d) None of these				
10) To solve the equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial t^2} = 0$ at =0 by method of separation variables,				
we assume the solution in the form u (x, y, t).				
a) $X(x) Y(y) Z(z)$ b) $X(x) Y(y)$				
c) X(x) Y(y) T(1)	d) None of these			
Short Answer Questions				
1. Solve the equation of wave in the form $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ by method of separation of variables.				
2. Explain the method of separation of variables	Explain the method of separation of variables for solving equation $\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$			
3. Explain the method of separation of variables	3. Explain the method of separation of variables for solving the equation $\frac{\partial^2 u}{\partial x^2} = k \frac{\partial^2 u}{\partial y^2}$ (k > 0)			
Long Answer Questions				

1.	Explain the m	ethod	of solving two d	imen	siona	l Laplace equation	$\frac{\partial}{\partial n}$	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ by method of
	separation of variables.							
2.	Explain the method of separation of variables for solving three							
	dimensional Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$							
	U	nit I-	Chapter II- Frol	penior	us M	ethod and Specie	al Fi	unctions
• Mu	ultiple Choice	Quest	tions (Correct a	nswei	is s	hown in red colo	or)	
1) If i	n the equation $\frac{2}{3}$	$\frac{d^2y}{dx^2}$ +	$H(x)\frac{dy}{dx} + B(x)$	<i>y</i> = (), the	function P (x) a	nd Q	(x) are analytic at point x
= x _o , t	hen the point x	₀ is	point.					
a) ord	linary				b) s	singular		
c) bot	h (a) and (b).				d) 1	none of these		
2) For	the equation x	$2 \frac{d^2 y}{dx^2}$	$+x\frac{dy}{dx}+y=0,$	the po	oint o	of regular singula	rity	is
a) x=0	a) x=∞			b) x=1				
c) $x = 0$			d) none of these					
3) For	3) For the equation $(1 - x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 4y$, the point $x = 0$ point							
a) ordinary			b) singular					
c) bot	c) both (a) and (b)			d) none of these				
4) For the equation $2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 4)y = 0$, the point removable singularity is								
a) x=0	Ø	b) x:	=0	c) x	x = 2			d) $x = \pm 1$
5) For the equation $x^2(x+1)^2 \frac{d^2y}{dx^2} + (x^2-1)\frac{dy}{dx} + 2y = 0$, the point $x = 0$ is Point.								
a) ord	linary	b) singular		c)	irregular singular		d) <i>both</i> a & b
6) For	6) For the equation $x^2(x+1)^2 \frac{d^2y}{dx^2} + (x^2-1)\frac{dy}{dx} + 2y = 0$, the point irregular singularity is							
a) x=0)		b) x=1			c) x = -1		d) $x = \pm 1$

7) For the equation $x(x - x)$	$1)^3 \frac{d^2 y}{dx^2} + 2(x-1)y + $	-3y = 0, t	he point regu	lar singularity	'is		
a) x=0	b) x=1	c) both ((a) and (b)	d) none of t	hese		
8) The equation $x^2 \frac{d^2 y}{dx^2} +$	ysinx = 0, the point x	x =0 isp	ooint.				
a) ordinary b) regular singular							
c) irregular singular		d) none of these					
9) Legendre's differential	9) Legendre's differential equation has general solution in the form						
a) $y = AP_n(x)$							
b) $y = BQ_n(x)$							
c) $y=A P_n(x)+BQ_n(x)$							
d) none of these							
10) For the Legendre's po	-						
a) $P_n(1)=0$	a) $P_n(1)=0$ b) $P_n(-x) = Pn(x)$		c) $P_n(x)=1$	d) $P_n(-x) = (-1)^{n-1}$	$)P_n(x)$		
11) The Bessel's equation $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$ has regular singularity atpoint.							
a) x=∞	b) x=∞ b) x=0			d) $x = n$			
12) In Frobenious method of series solution to the Legendre's differential equation, the solution is							
given $y=a P_n(x) + b Q_n(x)$. Here, functions $P_n(x)$ and $Q_n(x)$ are							
a) analytic b) linea	arly dependent	c) linear	ly independer	t d) none	e of these		
13) If $x = 0$ is regular singularity of the differential equation, then its series solution is assumed in the							
form							
a) $y = \sum_{m=0}^{\infty} a_m x^m$	b) $y = \sum_{m=0}^{\infty} a_m x^{k+m}$						
c) $y = \sum_{m=0}^{\infty} a_m x^{k-m}$	d) either (b)or (c)						
Short Answer Questions							
1. Find the general solution of the equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + 3y = 0$ by Frobenious method.							

2.	Define Legendre's Polynomials of first kind and derive first four polymials.					
3.	. In usual notations, prove that (i) $P_n(1)=1(ii) P_n(-x)=(-1)^n P_n(x)$.					
• Lo	ong Answer Questi	ons				
1.	Define ordinary p	oint, regular singularity	and irregular singularity of	the second order		
	differential equation	on and them with help o	of examples.			
2.	Find the general s	olution of the Legendre	s differential equation by F	robenious method.		
3.	Derive Lagrange's	equations of motion fr	om Hamilton's principle.			
4.	Define Bessel's di	fferential equation and	solve it by using series solu	tion method.		
5.	Explain the Frobe	nious method for solvir	ing the equation, $a_o(x) \frac{d^2 y}{dx^2}$	$-a_1(x)\frac{dy}{dx} + a_2(x)y = 0.$		
	1	Unit II- Chapter I	Some Special Integrals			
• Mu	ultiple Choice Que	stions (Correct answe	r is shown in red color)			
1) Th	e value of is					
a) $\sqrt{\pi}$	Ţ	b) $\pi\sqrt{2}$	c) $\frac{\sqrt{\pi}}{2}$	d) $\frac{\pi}{\sqrt{2}}$		
2) Th	2) The value of $\frac{1}{4} \cdot \frac{3}{4}$					
a) $\frac{\sqrt{\pi}}{2}$	<u>.</u>	b) $\pi\sqrt{2}$	c) $\frac{\sqrt{\pi}}{2}$	d) $\frac{\pi}{2\sqrt{2}}$		
3) \int_{0}^{1} (3) $\int_0^1 (1-x)^{-1/2} dx = \dots$					
a) $\frac{16\sqrt{15}}{15}$	$\frac{\sqrt{\pi}}{5}$ b) $\frac{8}{15}$	5	c) $\frac{16}{15}$	d) None		
4) $\int_0^\infty \frac{x^6 (1-x^8)}{(1+x)^{22}} dx = \dots$						
a)	0	b) β(7,15)	c) β (6,22) d)	β (8,22)		
5) The value of integral $\int_0^\infty e^{x^2} dx = \dots$						
a) π		b) $\frac{\sqrt{\pi}}{2}$	c) $\frac{\sqrt{\pi}}{2\sqrt{2}}$	d) 1		

• Short Answer Questions
1. Prove that Beta function is symmetric and show that
$$\int_{0}^{\infty} \frac{dx}{1+x^4} = \frac{\pi}{2\sqrt{2}}$$

2. Definite error function, complementary error function and prove that
ef (x) + ef₄(x) = 1.
3. Define error function and show that it is odd function with relation
ef (0) + ef (∞) = 1.
• Long Answer Questions
1. Define Beta and Gamma functions and prove that
 $\beta(m, n) = \int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} dx$
2. Define Gamma function and prove that
(i) $\int_{0}^{\infty} e^{-kx} x^{n-1} dx = \frac{\left[\frac{\pi}{k^n}\right]}{\left[\frac{\pi}{k^n}\right]}$ (ii) $\left[\frac{\pi}{n} = (n-1)!\right]$
3. 4. Define Beta function and prove that
 $\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x dx = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right)$
4. Define Beta function and prove that
 $\int_{0}^{\pi/2} \sin^{p} x \cos^{q} x dx = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2}\right)$
5. Derive the duplication formula $2^{2m-1} \left[\frac{m}{m} + \frac{1}{2} = \sqrt{\pi} \right] 2m$.

1) The modulus of		answer is shown in red co	lor)
	1 1 0 ()		
a) 2	complex number $2(\sqrt{3})$	$(\overline{3} + i)$ is	
a) 2	b) 4	c) $2\sqrt{3}$	d) none
2) The argument o	f complex number -1	$-\sqrt{3}$ i is	
a) $\frac{\pi}{3}$	b) $\frac{2\pi}{3}$	c) $\frac{4\pi}{3}$	d) $\frac{5\pi}{6}$
3) The exponential	form of complex nun	nber 1-i is	
a) $\sqrt{2}e^{\frac{\pi i}{4}}$	b) $\sqrt{2}e^{\pi i}$	c) $\sqrt{2}e^{-\pi i}$	d) $\sqrt{2}e^{\frac{\pi i}{4}}$
4) The value of log	g (i) is		
a) 1	b) $\frac{\pi}{2}$	c) $\frac{i\pi}{4}$	d) $\frac{i\pi}{2}$
5) If ω is complex	cube root of unity, the	$\sin \omega^3 = \cdots \dots$	
a) 1	b) -1	c) i	d) 0
6) The square of i a	are given by		
a) $\pm (1+i)$	b) $\pm \frac{(1+i)}{\sqrt{2}}$	c) $\pm \frac{(1-i)}{\sqrt{2}}$	d)None
7) The value of $e^{i(t)}$	π/2) _{is}		
a) 1	b) 1+i	c)i	d)-i
8) The value of (1 -	$+i+i^2)^{10}$ is		I
a) 1	b) -1	c) 0	d) 1
9) One of the value	$e \operatorname{of} \left(\sin \frac{\pi}{3} + i \cos \frac{\pi}{3} \right)^3 \operatorname{is}$	S	1
a) i	b) -i	c) 0	d) 1

a) $\frac{\partial u}{\partial x} =$	$=\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}=\frac{\partial v}{\partial y}$
b) $\frac{\partial u}{\partial x}$	$=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=\frac{\partial v}{\partial x}$
c) $\frac{\partial u}{\partial x}$	$=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=\frac{-\partial v}{\partial x}$
d) $\frac{\partial u}{\partial x}$	$=\frac{\partial v}{\partial x}, \frac{\partial u}{\partial y}=\frac{\partial v}{\partial y}$
• Sh	ort Answer Questions
1.	Represent the complex numbers z_1 . z_2 and z_1 / z_2 geometrically for any two complex z_1 ,
	and z_2 .
2.	Explain the method of finding square roots of complex number x+iy, hence, find the
	square root of 5-12i.
3.	Prove that $\log z = \log z + i \operatorname{argz}$, hence find the value of $\log (-1-i)$.
4.	Explain the term 'generalised coordinates'. Why they are needed?
5.	Write a note on 'Principle of virtual work'
6.	Obtain D'Alembert's principle in generalized coordinates.
7.	Write a note on 'Atwood's Machine'.
8.	Derive an equation of motion for a bead sliding on a uniformly rotating wire.
• Lo	ng Answer Questions
1.	Using Euler's formula prove the De'Moivre's theorem.
2.	Using De'Moivre's theorem, prove that if $x + \frac{1}{x} = 2\cos\theta$, then $x^n + \frac{1}{x^n} = 2\cos\theta$
3.	State and prove the Cauchy-Riemann conditions for a function to be analytic.