Rayat Shikshan Sanstha's

Rajarshi Chhatarapati Shahu College, Kolhapur

Department of Physics

Question Bank

Paper VI- DSC-C2 Waves and Optics - I

Class: **B.Sc. II** Teacher's name: **Shri. Raviraja T. Patil**

Unit I- Chapter I- Superposition of Harmonic Oscillations

- Multiple Choice Questions (Correct answer is shown in red color)
- 1. Following is the homogeneous differential equation

a)
$$\frac{d^2y}{dt^2} = A - \omega^2 y$$

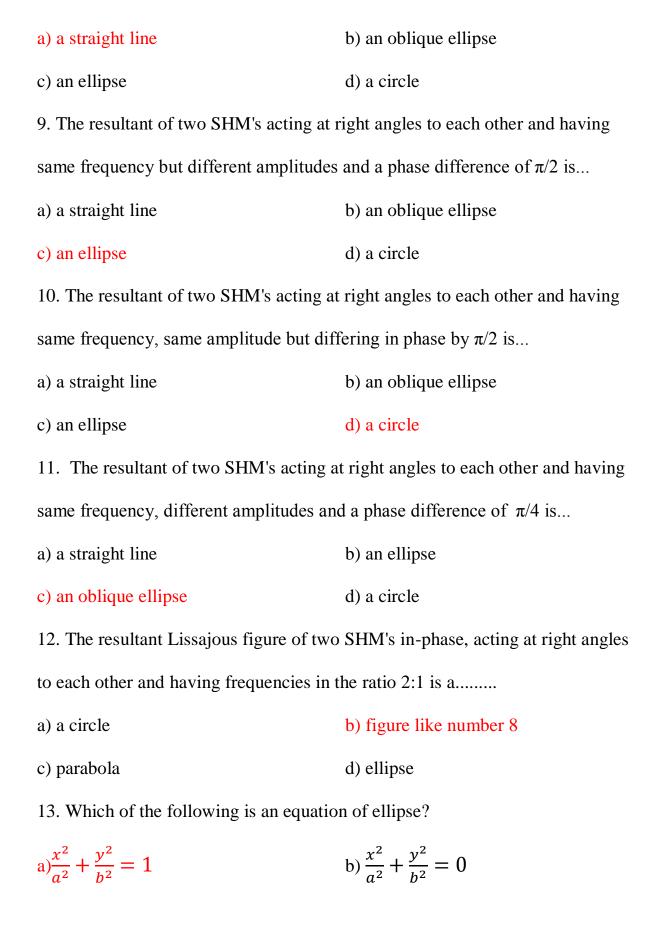
b)
$$\frac{d^2y}{dt^2} = \omega^2 y + x$$

c)
$$\frac{d^2y}{dt^2} = C$$

$$d)\frac{d^2y}{dt^2} = -\omega^2y$$

2. Following is linear equation

a)
$$\frac{d^2y}{dt^2} = A - \omega^2 y$$


b)
$$\frac{d^2y}{dt^2} = -\omega^2 y + Ay^2$$

c)
$$\frac{d^2y}{dt^2} = -\omega^2 y + Ay^3$$

$$d)\frac{d^2y}{dt^2} = Ay^2$$

- 3. Principle of superposition is obeyed by
- a) homogeneous equations
- b) linear equations
- c) homogeneous and linear equations
- d) non-linear equations
- 4. Resultant amplitude due to superposition of two vibrations $y_1 =$

 $a_1 sin(\omega t + \alpha_1)$ and $y_1 = a_2 sin(\omega t + \alpha_2)$ is given by..... a) $[a_1^2 + a_2^2 + 2a_1a_2\cos(\alpha_1 - \alpha_2)^{1/2}]$ b) $[a_1^2 + a_2^2 + 2a_1a_2\sin(\alpha_1 - \alpha_2)^{1/2}]$ c) $a_1 + a_2$ d) $a_1 - a_2$ 5. Beats are produced due to superposition of two....... a) harmonic oscillations b) collinear oscillations c) oscillations with slightly different frequencies d) non harmonic oscillations 6. Beat frequency of two SHM's with frequencies n_1 , and n_2 is given by..... a) $n_1 + n_2$ b) $n_1 \sim n_2$ c) $\frac{1}{n_1 + n_2}$ d) $\frac{1}{n_1 \sim n_2}$ 7. Lissajons figures are produced by superposition of two........ a) SHM's b) collinear SHM's c) perpendicular SHM's d) perpendicular SHM's with frequencies which can be expressed as simple integral ratios. 8. The resultant of two SHM's acting at right angles to each other and having equal frequencies and a phase difference of π is,

c)
$$x^2 + y^2 = 1$$

d)
$$x^2 + y^2 = a^2$$

14. Which of the following is an equation of circle?

$$a)\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

c)
$$x^2 + y^2 = 1$$

d)
$$x^2 + y^2 = a^2$$

15. Beat period of two SHM's with frequencies n_1 , and n_2 is given by.....

a)
$$n_1 + n_2$$

b)
$$n_1 \sim n_2$$

$$c)\frac{1}{n_1+n_2}$$

$$d) \frac{1}{n_1 \sim n_2}$$

• Short answer questions

- 1. What are Lissajous figures? Discuss briefly their importance in acoustical measurements.
- 2. Discuss uses of Lissajous figures?

• Long answer questions

- Define superposition principle and show that it is valid only in case of homogeneous linear vibrations.
- 2. Discuss in detail, analytically, the resultant motion of two simple harmonic motions having same frequency and acting along the same line.
- 3. Discuss in detail, graphically, the resultant motion of two simple harmonic motions having same frequency and acting along the same line.
- 4. Discuss in detail, analytically the resultant vibration of SHM's having equal periods and acting at right angles to each other. Discuss different cases.
- 5. Explain, graphically, the composition of two SHM's of equal periods, zero phase difference and acting at right angles to each other.
- 6. Explain, graphically, the composition of two SHM's having same frequency, a phase

difference of $\frac{\pi}{2}$ and acting at right angles 2 to each other.

- 7. Explain, analytically, the resultant motion of two SHM's acting at right angles to each other and having frequencies in the ratio 2:1 and a phase difference (a). Discuss different cases of Lissajous figures.
- 8. Explain, graphically, the composition of two SHM's acting at right angles to each other and having frequencies in the ratio 2:1 and in-phase.

Unit I- Chapter II- Coupled Oscillations

•	Multiple Cl	hoice Qu	uestions (Correct	answer is	shown	in red	colo	r)
			(22201122			_

1. Simple harmonic oscillations are.....

- a) periodic b) aperiodic c) sinusoidal d) nonsinusoidal
- 2. Normal modes of vibration of a coupled system are
- a) periodic b) aperiodic c) sinusoidal d) nonsinusoidal
- 3. Slow frequency of normal mode of oscillation of two identical pendula is given by......

a)
$$\sqrt{\frac{g}{l}}$$
 b) $\sqrt{\frac{g}{l} + \frac{2k}{m}}$ c) $\sqrt{\frac{l}{g}}$ d) $\sqrt{\frac{l}{g} + \frac{2k}{m}}$

4. Fast frequency of normal mode of oscillation of two identical pendula is given by......

a)
$$\sqrt{\frac{g}{l}}$$
 b) $\sqrt{\frac{g}{l} + \frac{2k}{m}}$ c) $\sqrt{\frac{l}{g}}$ d) $\sqrt{\frac{l}{g} + \frac{2k}{m}}$

5. In normal modes of oscillation the oscillating parts have.......

- a) same frequency b) different amplitude
- c) different phase d) different frequency

6. Total energy of a	coupled system of tv	wo pendula is	
a) $2\text{mA}^2 \left(\frac{\omega_1 + \omega_2}{2}\right)^2$	$\sin^2\left(\frac{\omega_2-\omega_1}{2}\right)t$	b) $2\text{mA}^2 \left(\frac{\omega_1 + \omega_2}{2}\right)^2 \omega_1$	$\cos^2\left(\frac{\omega_2-\omega_1}{2}\right)t$
c) $2\text{mA}^2 \left(\frac{\omega_1 + \omega_2}{2}\right)^2$		d) $2mA^2\left(\frac{\omega_2-\omega_1}{2}\right)t$	
7. In a coupled syst	em the extent to whic	ch one system influer	nces the motion of
the other is called	of the system		
a) coupling	b) coupling capacity	c) limit of coupli	ng d)binding
8. In the symmetric	mode of oscillations	, the particles are ose	cillating always
a) in opposite phase	<u>,</u>	b) in phase	
c) with constant pha	ase	d) out of phase	
9. Normal coordina	tes in coupled oscilla	tory system involve	frequency.
a) one	b) two	c) three	d) four
10. Anti symmetric	mode of oscillations	hasfrequen	cy than symmetric
mode.			
a) half	b)) one third	c) two third	d) higher
• Short answer ques	stions		
1. Write note on co	upled oscillatory system.		
• Long answer ques	tions		
1. For a coupled sys	stem of two identical pen	dula, coupled by a sprin	g of spring constant k,
explain what are	normal coordinates and r	normal modes of vibration	ons and hence obtain
expressions for th	ne frequencies of normal	modes of vibration.	
2. Find an expression	on for the total energy of	a coupled system of two	identical pendula

coupled by a spring and thereby explain the energy transfer from one pendulum to other.

Discuss the nature of normal modes of oscillations of two identical pendula coupled by 3. a spring of constant k...

Unit I- Chapter III- Ultrasonic Waves

- Multiple Choice Questions (Correct answer is shown in red color)
- 1. Expression for velocity of transverse wave travelling along a stretched string is.....

a)
$$v = \frac{T}{m}$$

a)
$$v = \frac{T}{m}$$
 b) $v = \frac{m}{T}$

c)
$$v = \sqrt{\frac{T}{m}}$$
 d) $v = \sqrt{\frac{m}{T}}$

d)
$$\nu = \sqrt{\frac{m}{T}}$$

2. Expression for travelling wave in x-positive direction.....

a)
$$y = asin(\omega t - kx)$$

b)
$$y = a \sin \frac{2\pi}{\lambda} (\omega t - kx)$$

c)
$$y = asin(\omega t + kx)$$

d)
$$y = a \sin \frac{2\pi}{\lambda} (\omega t + kx)$$

- 3. Nodes in standing waves are the points where.....
- a) displacement is zero

- b) amplitude is zero
- c) displacement is maximum
- d) amplitude is maximum
- 4. Antinodes in standing waves are the points where.....
- a) displacement is zero

- b) amplitude is zero
- c) displacement is maximum
- d) amplitude is maximum
- 5. The distance between successive nodes (or antinodes) is....
- a) $\frac{\lambda}{4}$

b) $\frac{\lambda}{2}$

 $c)\lambda$

 $d)2\lambda$

6. Frequency, $n = \frac{p}{2l} \sqrt{\frac{T}{m}}$ is the frequency of				
a) fundamental mo	ode	b) p th harmonic		
c) p th overtone		d) none of the above	e	
7. Phase velocity of	of a wave is			
a) $v = \frac{\omega}{k}$	b) $v = \frac{k}{\omega}$	c) $v = \frac{d\omega}{dk}$	$\mathrm{d})\nu = \frac{dk}{d\omega}$	
8. Group velocity	of waves is			
a) $v = \frac{\omega}{k}$	b) $v = \frac{k}{\omega}$	c) $v = \frac{d\omega}{dk}$	$\mathrm{d})\nu = \frac{dk}{d\omega}$	
9. Spherical waves	are			
a) originated from	a point source			
b) divergent				
c) those in which e	energy goes on decrea	sing		
d) all the above				
10. Plane waves are				
a) originated from a source at infinitely large distance				
b) collimated				
c) those in which energy (intensity) remains same				
d) all the above				
11. Piezoelectric generator uses				
a) the principle of converse Piezo-electric effect				
b) an electronic oscillator				

- c) the idea of resonance vibrationsd) all the above12. Ultrasonics are......
- a) sound waves with frequency greater than 20,000 Hz.
- b) sound waves with frequency less than 20,000 Hz.
- c) waves travelling with velocity greater than that for sound waves.
- d) waves travelling with velocity less than that for sound waves
- Short answer questions
- 1. Write a short note on spherical and plane wavefronts.
- 2. What is Piezo-electric effect?
- 3. How ultrasonic waves are detected?
- 4. Discuss the applications of ultrasonics in brief

• Long answer questions

- Derive an expression for the velocity of transverse waves travelling along a stretched string under a tension.
- 2. Explain the travelling waves and standing waves in a stretched string and there by show that the distance between successive nodes (or antinodes) is equal to $\frac{\lambda}{2}$
- What are normal modes of vibration of a stretched string? Obtain an expression for the frequency of pth mode.
- 4. Explain phase velocity and group velocity and hence obtain expressions for the same.
- 5. Explain the principle, construction and working of Piezo-electric generator.

Unit II- Chapter I- Sound And Acoustics of Buildings

• Multiple Choice (Multiple Choice Questions (Correct answer is shown in red color)				
1. The devices whi	ch converts non elec	etrical signal into corr	responding electrical		
signal or vice versa	a are called				
a) microphones	b) loudspeakers	c) transducers	d) amplifier		
2. Microphones ar	re				
a) active transduce	er	b) passive transduc	cer		
c) transducer		d) amplifier			
3. Unit of intensity	y level is				
a) decibel	b) erg/cm ² /s	c) joule/m ² /s	d) erg/cm ²		
4. The pleasant eff	ect produced by note	es produced one after	another is called		
a) chord	b) dischord	c) harmony	d) melody		
5. The interval bet	tween two notes is	of their frequency			
a) the ratio	b)product	c) sum	d)difference		
6. When sounding	source in a closed s	pace like hall is cut-	off the intensity of		
sound	sound				
a) suddenly falls of	lown to zero	b) decreases linea	rly with time		
c) decreases expor	nentially with time	d) remains consta	nt with time		
7. Reverberation t	7. Reverberation time is				
a) proportional to	proportional to the volume of the hall				
b) inversely propo	ortional to the absorb	ing surface area in th	e hall		

b) one square metre	2			
d) one square foot	of open window			
a good acoustic				
c) very small	d) zero			
osorption coefficient	that effective			
c) $A = (aS)^2$	$\mathbf{d)} \ \ A = aS$			
c) $T = 0.165 \frac{V}{\overline{a}S}$	$d) T = 0.165 \frac{V}{aS}$			
$c) T = 0.165 \frac{V}{\overline{a}S}$	$d) T = 0.165 \frac{V}{aS}$			
13. The interval is called as major tone				
c) $\frac{9}{10}$	d) $\frac{8}{9}$			
14. Loudness of sound is related to				
a) intensity of sound b) sensitivity of year of listener				
c) density of medium d) all the above				
	d) one square foot of a good acoustic c) very small esorption coefficient c) $A = (aS)^2$ c) $T = 0.165 \frac{V}{\overline{a}S}$ c) $T = 0.165 \frac{V}{\overline{a}S}$ ne c) $\frac{9}{10}$ b) sensitivity of year			

15. Maximum intensity that human ear can tolerate is.....

a)
$$10^{-2}$$
 watt / *cm*²

b)
$$10^{-4}$$
 watt $/$ *cm*²

c)
$$10^{-2}$$
 watt / m^2

d)
$$10^{-4} watt / cm^2$$

16. Which of the following is zero intensity level?

a)
$$I_0 = 10^{-10} watt / cm^2$$

b)
$$I_0 = 10^{-12} watt / cm^2$$

c)
$$I_0 = 10^{-14} watt / cm^2$$

d)
$$I_o = 10^{-16} watt / cm^2$$

17. intensity of sound waves is proportional to

a) square of the amplitude

b) square of the frequency

c) density of the medium

d) all (a), (b), (c)

• Short answer questions

1. What are transducers? Discuss the characteristics of transducers.

2. What is the necessity of a baffle in the loudspeaker?

3. Define intensity of sound and explain what do you mean by loudness?

- 4. Define and explain intensity level of sound and its unit.
- 5. Write a note on musical notes.
- 6. What is musical scale? Elaborate the diatonic scale.
- 7. Define and explain reverberation and reverberation time?
- 8. Define and discuss the coefficient of absorption of sound energy.
- 9. Discuss 'acoustic aspects of an auditorium".

• Long answer questions

1. What is pressure microphone? Explain the principle, construction and working of pressure microphone.

$^{\circ}$	D .	a 1 ' '	C 1	C .1	1	, •
')	1 10r1VA	Sahine	tormilla	tor the	reverberation	fime
<i>Z</i> -		\mathbf{v}	1071 1110114	1071 1110	16,76,118,1141,1611	LIIII.

What is pressure microphone? Explain the principle, construction and working of 3. moving coil loudspeaker.

Unit II- ChapterII- Viscosity				
• Multiple Choice	ce Questions (Correc	ct answer is shown in red	color)	
1. The cgs unit	t of coefficient of	viscosity is		
a) erg	b) dyne	c) poise	d) erg/cm	
2. The viscosi	ty of liquidwit	h increase in temperatu	re	
a) increases	b) decreases	c) remains constant	d) changes abnormally	
3. Liquids used	d as lubricants are	ofviscosity		
a) low	b) high	c) zero	d) infinite	
4. The viscous	drag in a liquid is	given by the equation		
a) $F = \eta A \frac{dv}{dz}$	b) $F = \frac{\eta}{A} \frac{dv}{dz}$	c) $F = \frac{\eta}{A \frac{dv}{dz}}$	$d) F = \frac{A}{\eta \frac{dv}{dz}}$	
5. Which assur	mptions are made	while deriving the Poise	euille's formula for	
coefficient of	viscosity?			
a)The flow of liquid is streamline.				
b) There is no any radial flow.				
c) The liquid in contact with the sides of the capillary tube.				
d) All of the three above.				

6. Following is the Poiseuille's equation for the coefficient of liquid.

a)
$$\eta = \frac{\pi V a^4}{8lP}$$
 b) $\eta = \frac{\pi P a^4}{8lV}$ c) $\eta = \frac{\pi V P}{8la^4}$ d) $\eta = \frac{8lV}{\pi P a^4}$

capillary is always kept				
a) horizontal	b) vertical			
c) slanted	d) making an angle of	45° with the horizontal		
8. For water, the coefficient of viscosity	isat 80° of its value a	t 10° C.		
a) double c) one fourth	b) triple	d) one third		
9. When temperature of liquid incr	reases, the separation b	between molecules		
a) increases b) decreases c) remains constant	d) changes abnormally		
10. When temperature of liquid inc	creases, the cohesive for	orces between		
molecules				
a) increases b) decreases c) remains constant	d) changes abnormally		
• Short answer questions				
1. How viscosity of a liquid varies w	ith temperature?			
2. Write a note on lubrication.				
3. What is mean by viscosity of fluid	. Discuss streamline flow.			
4. What is mean by viscosity of fluid	. Discuss Turbulent flow.			
5. Discuss characteristics of fluid flor	w.			
• Long answer questions				
1. Show that the profile of the advance	Show that the profile of the advancing liquid in a horizontal capillary tube is a parabola.			
2. Derive an expression for the rate of	Derive an expression for the rate of flow of liquid through a capillary tube.			
3. Derive Poiseuille's formula for coe	Derive Poiseuille's formula for coefficient of viscosity of a liquid.			
4. Describe the experimental determi	nation of coefficient of vi	scosity of a liquid by		
Poiseuille's method.				

7. In Poiseuille's experiment to determine coefficient of viscosity of a liquid, the

Unit II- Chapter III- Physics of low pressure

• Multiple Choice Questions (Correct answer is shown in red color)				
1. Rotary pump i	s also called			
a) backing pump	a) backing pump b) fore pump			
c) roughing pump	p	d) all the above	
2. Rotary oil pur	mp can produce	a vacuum as lov	7 as	
a) ¹⁰⁻³ torr b	$(10^{-5} torr)$	c) ¹⁰⁻⁷ torr	$d)^{10^{-9}}$	otorr
3. Rotor in the ro	otary oil pump is			
a) rotated fast		b) rota	ted inside the s	stator
c) rotated eccentr	rically	d) all t	he above	
4. The principle of	of diffusion pum	p is		
a) gases diffuse				
b) gases diffuse f	from lower conce	entration to high	er concentration	on
c) gases diffuse f	rom higher conc	entration to low	er	
d) none of the abo	ove			
5. Air-free mercu	ıry vapour is nec	essary for the ac	ction of pump.	
a) rotary	b) molecular	c) dif	fusion	d) vacuum
6. A cooling system is essential for the operation of pump.				
a) rotary	b) diffusion	c) mol	ecular	d) vacuum
7. Molecular pump can produce a vacuum as low as				
a) 10^{-3} torr	b) 10 ⁻⁵ torr	c) 10 ⁻	⁻⁷ torr	$d)^{10^{-9}torr}$

8.Knudsen gauge is	
a) an absolute gauge	c) most rugged gauge
b) a secondary gauge	d) none of the above
9.Pirani gauge is	
a) an absolute gauge	
b) a secondary gauge	
c) most sensitive gauge which can measur	re very low pressures
d) none of the above	
10.Principle of Knudsen gauge is	
a) diffusion of gas	
b) dependence of thermal conductivity of	the gas on the pressure
c) radiometric effect	
d) molecular flow	
11.Tolerable leak depends on	
a) pumping speed	c) volume of the system
b) operating pressure	d) all the above
• Short answer questions	
1. What are different classes of vacuum pump	os? Discuss different characteristics of
vacuum pumps.	
2. Write a note on 'Leak Detection'.	
• Long answer questions	
1. Explain the principle, construction and wor	king of rotary pump. What is the

- significance of oil in the pump oil.
- 2. Discuss the principle, construction and working of a diffusion pump.
- 3. Why a backing pump is necessary for the operation of diffusion pump.
- 4. Explain the principle, construction and working of molecular pump.
- 5. Discuss the necessity of backing pump for the operation of molecular pump. 8. Explain the principle, construction and working of Knudsen gauge. Why it is called an absolute gauge?
- 6. Discuss the principle, construction and working of Pirani gauge.