Shivaji University Kolhapur

B.Sc. Part III Physics CSBC ()Sem V

Physics Paper- X: DSC-E2 Quantum mechanics

Question Bank

Unit I : Matter waves

		rrect alternatives in red color)				
-	l over a small region calle	-				
_	(b) progressive					
	(d) interfering v					
	ers (E, p) are related with	wave parameters(ω ,k) by the				
relations						
(a) $E=\hbar k$ and $p=1$	hw (b) E = hw and	(b) $E = \hbar w$ and $p = \hbar k$				
(c) $E=\hbar/k$ and $p=\hbar$	/w (d) $E = \hbar/w$ and	(d) $E=\hbar/w$ and $p=\hbar/k$				
(iii)exhibit dual r	nature viz. wave and parti	cle nature.				
(a) Both photons a	and material particles	(b) photons				
(c) material partic	les	(d) waves				
(iv) de Broglie waveleng	th (λ) is given by	-				
(a) $\lambda = h/P$	(b) $\lambda = P/h$					
(c) λ=hp	$(d)\lambda = C/\upsilon$					
(v) Phase velocity (u) is §	given by					
(a) $u = \Delta \omega / \Delta k$	(b) $u = \Delta k / \Delta \omega$					
$(c)u = \omega/k$	(d) $u = k/\omega$					
(vi) Group velocity (Vg)	is given by					
$(a)V_g = \Delta\omega / \Delta k$	(b) $Vg = \Delta k / \Delta \omega$					
(c) $V_g = \omega/k$	(d) $Vg = k/w$					
(vii) Relation between gr	oup velocity (Vg) and par	ticle velocity (V) is				
(a) $Vg>V$ (b) V	Vg < V (c) $Vg = V$	(d) $Vg \neq V$				
(viii) Uncertainty princip	le is expressed as,					
(a) $\Delta E \cdot \Delta p \geq \hbar$	(b) $\Delta E \cdot \Delta x \geq \hbar$					
$(c)\Delta x \cdot \Delta t \ge \hbar$	(d) $\Delta x \cdot \Delta p \ge \hbar$					
• Short answer	questions (5 marks)					

- 1. Discuss about wave particle duality.
- 2. State and explain de Broglie hypothesis of matter waves

- 3. Derive an expression for matter waves.
- 4. Explain the concept of wave packet.
- 5. State and explain uncertainty principle.
- 6. Calculate wavelength of electron travelling with a speed of 2.65 x 10⁶ m/s.
- 7. What is the speed of electron having λ =250 nm

• Long answer questions(10 marks)

- 1. Define and obtain expressions for phase velocity and group velocity.
- 2. Obtain relation between particle velocity and the group velocity.
- 3. Explain in details, how Davisson and Germer experiment proves deBroglie hypothesis.
- 4. On the basis of uncertainty principle, show that the electrons can't exist inside the nucleus.
- 5. What is the velocity of electron having de Broglie wave length approximately equal to chemical bond length of 1.2×10^{-10} m.
- 6.An electron is passing through a circular slit of radius 1 cm. Calculate the uncertainty in the momentum of electron.
- 7. Calculate de Broglie wavelength of an electron accelerated through a potential of 55 volts.

Unit II: Schrodinger wave equation

Select correct alternatives for the following (The correct alternatives in red color)

- (i) The wave function ψ , obeys the boundary condition.-----
 - (a) $|\psi| \rightarrow 0$ as $r \rightarrow 0$ (b) $|\psi| \rightarrow \infty$ as $r \rightarrow 0$
 - (c) $|\psi| \rightarrow 0$ as $r \rightarrow 0$ (d) $|\psi| \rightarrow \infty$ as $r \rightarrow \infty$
- (ii) The normalisation condition for the wave function is
 - (a) $_{-\infty}\int^{+\infty} \psi^* \psi d^3r = 0$ (b) $_{-\infty}\int^{+\infty} \psi^* \psi d^3r = 1$
 - (c) $-\infty$ $\int_{-\infty}^{+\infty} \psi^* \psi d^3r \le 1$ (a) $-\infty$ $\int_{-\infty}^{+\infty} \psi^* \psi d^3r \ge 1$
- (iii) The orthogonal condition for the wave functions $\psi_1\left(x\right)$ and $\psi_2\left(x\right)$ is-----
 - (a) $_{a}\int \psi_{1}*(x)\cdot \psi_{2}*(x)dx = 0$ (b) $_{a}\int \psi_{1}(x)\cdot \psi_{2}(x)dx = 0$
 - (c) $_{a}\int ^{b}\psi _{1}*(x)\cdot \psi _{2}(x)dx=0$ (d) $_{a}\int ^{b}\psi _{2}(x)\cdot \psi _{2}*(x)dx=1$

(iv) The expectation value of a function f (x), with normalised wave function (x) of a system is...

$$(a) < f(x) > = \int_{-\infty}^{+\infty} \psi^*(x) f(x) \psi(x) dx$$

(a)
$$< f(x) > = \int_{-\infty}^{+\infty} \psi^*(x) f(x) \psi(x) dx$$
 (b) $< f(x) > \int_{-\infty}^{+\infty} \psi(x) f(x) \psi(x) dx$

$$(c) < f(x) > = \int_{-\infty}^{+\infty} \psi^*(x) f(x) \psi^*(x) dx$$
 $(d) < f(x) > \int_{-\infty}^{+\infty} \psi(x) f(x) \psi^*(x) dx$

$$(d) \langle f(x) \rangle = \int_{-\infty}^{+\infty} \psi(x) f(x) \psi^*(x) dx$$

- (v) In terms of the momentum (p) and propagation vector (k), the relation for de Broglie wave is.....
 - (a) p=ħk
- (b) $p=\hbar/k$
- (c) p=ħω
- (d) $p = k/\hbar$
- (vi) Einstein's frequency relation is.......
 - (a) $E=h\omega$
- $(b)E=\hbar\omega$
- (c) E=ħυ
- (d) E=h/v
- (vii) The probability current density is given by........

 - (a) $J = 2m/i\hbar \left[\psi^* \nabla \psi \psi \nabla \psi^* \right]$ (b) $J = i\hbar/2m \left[\psi \nabla \psi^* \psi^* \nabla \psi \right]$
 - (c) $J = i\hbar/2m \left[\psi^* \nabla \psi \psi \nabla \psi^* \right]$ (d) $J = 2m/i\hbar \left[\psi \nabla \psi^* \psi^* \nabla \psi \right]$
 - Short answer questions (5 marks)
- 1. Give physical interpretation of the wave function and state the conditions that the wave function should satisfy.
- 2. Derive Schroedinger's time dependent wave equations for the matter wave in 1-D
- 3. Derive Schroedinger's time independent wave equations for the matter wave in 1-D
- 4. Write note on:
 - (a) Expectation value of the dynamical variables.
 - (b) Orthogonal and normalisation conditions of the wave functions.
- 5. If (P_x) is the x-component of the momentum and V is the potential at the position x, then prove that,
 - (a) $d/dt < x > = < P_x > / m$ where, m is mass of the particle
 - $(b)d/dt < P_x > = < dV/dx >$
 - Long answer questions(10 marks)
- 1. Derive Schroedinger's time dependent wave equations for the matter wave in 3-D.
- 2. Derive Schroedinger's time independent wave equations for the matter wave in 3-D.
- 3. From Schroedinger's time dependent wave equation derive an expression for J
- 4. Show that the probability density $P = \psi^* \psi$ and probability current density
- $J=i\hbar/2m \left[\psi \nabla \psi^* \psi^* \nabla \psi \right]$, satisfy the equation of continuity and thereby explain the physical significance of equation of continuity

Unit -III: Operators

C 1	4	. 14 4	P	C. 11		alternatives i		
POIDOT	COPPECT	alternatives	TOP THE	tollowing	I I ne correct	' alternativec i	n rea	COLORI
DUILLE	COLLECT	anttinanves	IUI IIIC	TOHO WILLS	THE COLLECT	ancinanicsi	II I CU	CUIUI

- (i) f(x) is an eigen function corresponding to an operator \bar{A} , then \bar{A} f(x) is----
 - (a) linearly related with f (x)
- (b) non-linearly related with f (x)

(c) f(x)

- (d) d/dx f(x)
- (ii) Linear momentum operator p_x is given by-----.
 - (a) $p_x = i\hbar (d/dx)$ (b) $p_x = -i\hbar (d/dx)$

 - (c) $p_x = i\hbar (d^2/dx^2)$ (d) $p_x = -i\hbar (d^2/dx^2)$
- (iii) The Hamiltonian operator H is given by
 - (a) $H = -i\hbar\nabla$

- (b) $H = i\hbar (d/dt)$
- (c) H= $\hbar^2/2m \nabla^2 + V(r)$
- (d) H= $\hbar^2/2m \nabla^2 V(r)$
- (iv) The kinetic energy operator is given by......
 - (a) $T = i\hbar (d/dt)$
- (b) T= $\hbar^2/2m \nabla^2 + V(r)$
 - (c) $T = \hbar^2/2m \nabla^2 + V(r)$ (d) $H = \hbar^2/2m \nabla^2$
- (v) The energy operator E is given by------
 - (a) $\bar{E} = -i\hbar\nabla$
- (b) $\bar{E} = i\hbar\nabla$
- (c) $\bar{E} = i\hbar (d/dt)$ (d) $\bar{E} = -i\hbar (d/dt)$
- (vi) Antisymmetric function of wave function ψ (x) is.....
 - (a) ψ (x)
- (b) ψ (x)
- (c)- ψ (-x)
- (d) ψ (-x)
- (vii) z-component of angular momentum operator is.....

 - (a) $L_z = m\hbar$ (b) $L_z = -m\hbar$ (c) $L_z = -i\hbar$ (d/d Φ) (d) $L_z = i\hbar$ (d/d Φ)
- (viii) The eigen value of operator L² is given by......

- (a) $< L^2>_= m\hbar$ (b) $< L^2>_= -m\hbar$ (c) $< L^2>_= l(l+1)\hbar^2$ (d) $< L^2>_= -l(l+1)\hbar^2$
- (ix) Commutation relations among position and momentum operator are expressed as.....
 - (a) $[x_i, p_i] = i\hbar \delta_{ii}$
- (b) $[x_i, p_i] = -i\hbar \delta_{ij}$
- (c) $[x_i, p_i] = i\hbar$
- (d) $[x_i, p_i] = 0$
- (x) Raising operator in quantum mechanics is.......

- (a) $L_{+} = L_{X} + iL_{Y}$ (b) $L_{+} = L_{x} iL_{y}$ (c) $L_{+} = L_{x} + iL_{z}$ (d) $L_{+} = L_{x} iL_{z}$
- Short answer questions (5 marks)
- 1. Define an operator. Hence, obtain expressions for
 - (i) linear momentum operator, (ii) total energy operator, (iii) parity operator.

- 2. Derive commutation relations for L_x , L_y and L_z
- 3. Define ladder operators and explain their effects.
- 4. Write a note on commutation rules for operators

• Long answer questions (10 marks)

- 1. Derive expressions for the operators L_x , L_y , L_z and L^2 in spherical polar co-ordinates
- 2. Find eigen values of L_z and L^2 .
- 3. Show that, if operators A and B commute with an operator C, then commutator of A and B also commutes with C.
- 4. Obtain expressions for operators L_x , L_y and L_z in cartesian co-ordinates

Unit IV: Application of schrodinger equation

Select correct alternatives for the following (The correct alternatives in red color)

(i)The energy spectrum of a particle in one-dimensional rigid box has the nature of-----

- (a) infinite sequence of discrete energy levels
- (b) infinite sequence of equidistant energy levels
- (c) exponentially increasing
- (d) exponentially decreasing
- (ii) The non-degenerate state of the energy possessed by a particle in three-dimensional rigid box is given by.....

(a)
$$n_x = 3$$
, $n_y = 3$, $n_z = 3$ (b) $n_x = 2$, $n_y = 2$, $n_z = 2$

(c)
$$n_x = 4$$
, $n_y = 4$, $n_z = 4$ (d) $n_x = 5$, $n_y = 5$. $n_z = 5$

(iii) The parity of the wave function is even when.......

(a)
$$\psi(-x) = -\psi(x)$$
 (b) $\psi(x) = x^3$ (c) $\psi(-x) = \psi(x)$ (d) $\psi(x) = x$

- (iv) The energy levels possessed by a linear harmonic oscillator are......
 - (a) infinite sequence of discrete energy levels
 - (b) exponential in nature
 - (c) infinite sequence of discrete equidistant energy levels
 - (d) continuous energy levels
- (v) The zero point energy of linear harmonic oscillator is

(a)
$$E_0$$
=0 (b) E_0 = $\hbar \omega$ (c) E_o = 2 $\hbar \omega$ (d) E_o = 1/2 $\hbar \omega$

(vi) A standing wave is formed between two supports at x = 0 and x = L with one loop, then energy possessed by a vibrating the particle of mass (m) which produces this standing wave is.----

(a)
$$E = h^2 \pi^2 / 2mL^2$$
 (b) $E = h^2 \pi^2 / 2mL^2$

(b)
$$E = \hbar^2 \pi^2 / 2mL^2$$

(c)
$$E = 1/2 \hbar \omega$$

(d)
$$E = \hbar \omega$$

(vii) Which of the following set will be obeyed by the magnetic orbital quantum number, when l = 2?

(a)
$$m_l = 1, 0, -1$$

(a)
$$m_1 = 1, 0, -1$$
 (b) $m_1 = 2, 1, 0, -1, -2$

(c)
$$m_l = 2,0,-2$$

(d)
$$m_1 = 0, 1, 2$$

(viii) In a normal state of the atom, the number of electrons in a sub-shell of the atom is given by

(a)
$$1\sqrt{1+1}$$

(b)
$$(2l+1)$$

(c)
$$2(2l+1)$$
 (d) $l+1/2$

(d)
$$l+1/2$$

• Short answer questions (5 marks)

- 1.Draw energy level diagram for linear harmonic oscillator.
- 2. Draw energy level diagram for hydrogen atom.
- 3.Explain the tunnel effect in case of rectangular potential barrier
- 4. Derive and explain zero point energy of an harmonic oscillator
- 5. Write notes on:
 - (i) Zero point energy,
 - (ii) Tunnel effect,
 - (iii) Reflection and transmission coefficients in rectangular potential barrier,
 - (iv) Degenerate states of the energy levels of the particle in three-dimensional rigid box

• Long answer questions (10 marks)

- 1. Calculate the reflection and transmission coefficients of electron through onedimensional rectangular potential barrier
- 2. What is reduced mass of electron in Hydrogen atom and why this term is used?
- 3. Solve radial part of the Schroedinger equation for hydrogen atom. neglecting electron spin angular momentum and obtain the energy eigen values. Explain the degeneracy in the spectrum.
- 4. Write down Hamiltonian for hydrogen atom and hence set-up Schroedinger wave equation in spherical polar co-ordinates.