Seat Set No. M.Sc. (Semester - IV) (New) (CBCS) Examination March/April-2019 **Statistics OPTIMIZATION TECHNIQUES** Day & Date: Thursday, 25-04-2019 Max. Marks: 70

Time: 03:30 PM To 06:00 PM

Instructions: 1) All questions are compulsory.

2) Figures to the right indicate full marks.

Q.1 Choose Correct Alternative from the following.

- Components of linear programming problem
 - a) Linear objective function
 - c) Non negative decision variables
- 2) If line segment joining to any two points in set is also belong to that set then such set is called
 - a) Bounded set
 - b) Concave set c) Convex set d) Closed set
- 3) If ith constraint of LPP is deleted then the optimum solution is also changed then such constraint is called _____
 - a) Redundant constraint
 - c) Unbinding constraint
- 4) Which of the following is not correct? a) Associated with every LPP, there is always another LPP which is based on the same data and having same solution
 - b) Given LPP is called primal while associated LPP is called its dual
 - c) It is necessary to convert the inequality constraint into equality constraints for writing the dual an LPP
 - d) Dual of dual is primal
- 5) What is not a solution to the following LPP

Max $Z = x_1 + x_2$, Subject to, $x_1 + 2x_2 \le 4$,

```
3x_1 + 2x_2 \le 10,
```

- $x_1 \ge 0, x_2 \ge 0$
- a) $x_1 = 0, x_2 = 2$ b) $x_1 = 2, x_2 = 0$ c) $x_1 = 2, x_2 = 1$
- Dual has unbounded solution then primal has _
 - a) Unique feasible solution
- b) Optimal solution d) None of the above
- c) Infeasible solution
- Post optimal analysis is technique to _____
 - a) Determine how optimum solution to an LPP changes in response to problem inputs
 - b) Allocate resources optimally
 - c) Minimize cost operations
 - d) Spell out the relation between dual and its primal

- b) Binding constraint
- d) None of these

SLR-ES-385

- d) $x_1 = 2, x_2 = 2$

- 8) The zero -one programming problem requires _
 - a) Decision variables to have values either 0 or 1
 - b) The decision variables have coefficients between 0 and 1
 - c) All constraints have coefficients between 0 and 1
 - d) All of the above
- 9) If X'QX is positive semi definite then, it is _____
 - a) Strictly convexc) Convex

- b) Strictly concaved) Concave
- 10) In two person zero sum game is said to be fair if ____
 - a) The upper value and lower value of the game are not equal
 - b) The upper value is more than lower value of the game
 - c) The upper value and lower value of the game are same and equal to zero
 - d) None of the above
- 11) A minimax and maximin values of the game are same, then ____
 - a) There is saddle point
 - c) Strategies are mixed
- b) Solution does not existsd) None of the above

12) Mixed strategies of the game can be solved by _

- a) Matrix method
- c) Graphical method
- b) Algebraic method
- d) All of the above

13) The QPP is NLPP with quadratic objective function and ____

- a) Linear inequality constraints
- b) Non-linear inequality constraints
- c) Non-linear equality constraints
- nstraints d) No constraints
- Simplex method of solving linear programming gives _____
 - a) Always optimal solution
 - b) at any of the iteration it may indicate that problem has unbounded solution
 - c) at any of the iteration it may indicate that problem has infeasible solution
 - d) None of the above

Q.2 A) Answer the following (Any four)

- 1) Define degenerate basic feasible solution.
- 2) Define artificial variable.
- 3) Define pure and mixed strategies with reference to game theory.
- 4) Define all and mixed integer programming problem.
- 5) Explain post optimal analysis.

B) Write Notes on (Any two)

- 1) Big-M method
- 2) Effect of Addition and deletion of variable on optimal solution of LPP
- 3) Recursive equation approach

Q.3 A) Answer the following (Any two)

- 1) Develop necessary of KKT conditions for an optimal solution to a quadratic programming problem.
- 2) Write down graphical procedure to solve two persons zero sum game.
- 3) Use two phase method to solve following
 - Maximize $Z = 5x_1 + 3x_2$, subject to,

$$\begin{array}{l} 2x_1 + x_2 \leq 1, \\ x_1 + 4x_2 \geq 6, \\ x_1, \, x_2 \geq 0 \end{array}$$

80

06

SLR-ES-385

	 B) Answer the following (Any one) 1) State and prove basic duality theory. 2) Explain Branch and Bound method to solve integer linear programming problem. 	06				
Q.4	 A) Answer the following (Any two) 1) Explain Gomory's fractional cut method to solve integer programming problem. 2) Use dynamic programming to solve the following LPP Max Z = 3x₁ + 5x₂ Subject to x₁ ≤ 4, x₂ ≤ 6, 3x₁ + 2x₂ ≤ 18, x₁, x₂ ≥ 0 3) State and prove complimentary slackness theorem. 					
 B) Answer the following (Any one) Obtain the range of change in b_i values to maintain feasibility of the optimal solution. Obtain optimum strategies and value of the game with payoff matrix of player A is given below,						
Q.5	Answer the following (Any two) a) Write down dual simplex algorithm. b) Solve the following quadratic problem using Beal's method Max $Z = 2x_1 + x_2 - x_1^2$ Subject to $2x_1 + 3x_2 \le 6$, $2x_1 + x_2 \le 4$, x_1 , $x_2 \ge 0$	14				

- c) Solve the following LPP Maximize $Z = -x_1 + 2x_2 x_3$ Sub to

$$\begin{array}{l} 3x_1+x_2-x_3\leq 10\\ -x_1+4x_2+x_3\geq 6\\ x_2+x_3\leq 4\\ x_1,\,x_2,\,x_3\geq 0 \end{array}$$

M.S	ic. ((Semester - IV) (New) (CBC	S) E	xamination Oct/No	ov-2019	
		OPTIMIZATION T	ics ECF	INIQUES		
Date 03:00	: Mo PN	onday, 11-11-2019 I To 05:30 PM			Max. Marks: 70)
uction	i s: 1 2) All questions are compulsory. 2) Figures to the right indicate full	mark	S.		
Fill ir 1)	wh Wh a) c)	e blanks by choosing correct al ich of the following is not assump Certainty Creativity	terna tion c b) d)	itives given below. of LPP? Additively Proportionality	14	ļ
2)	To <i>c_k c a) c)</i>	maintain optimality of current solution of non basic variable, we must have $\Delta c_k = z_k - c_k$ $\Delta c_k \le z_k - c_k$	ition f /e b) d)	for a change Δc_k in the $\overline{\Delta c_k \ge z_k} - c_k$ $\Delta c_k = z_k$	coefficient	
3)	Sla a) b) c) d)	ck variable Which can be added in less than Which can be added in greater tl Which can be a added both type Which can be added in equality t	han e han e s of c	al to constraint qual to constraint constraint constraint		
4)	Red a) b) c) d)	dundant constraint Can not affect on feasible solution If we add then decrease the feasi If we add then increase the feasi None of these	on spa sible s ible s	ace solution space olution space		
5)	Dua a) b) c) d)	al simplex method applicable to th An infeasible solution An infeasible but optimum solution A feasible solution A feasible and optimal solution	iose on	_PP's that starts with _		
6)	Át a bas solu a) c)	any iteration of the usual simplex i sic variable in the basis at zero lev ution is Infeasible Non-degenerate	meth vel an b) d)	od, if there exist at leas d all $z_j - c_j \ge 0$, the c Unbounded Degenerate	st one urrent	
7)	ln r a) b)	nixed integer programming proble Different objective functions are All of the decision variables requ	m mixe iires i	d together nteger solutions		

8) Branch and bound method divides the feasible solution space into smaller parts by __

Only few of the decision variables requires integer solutions

a) Enumerating

None of these

c) Bounding

- b) Branching
- d) All of the above

M.Sc.

Day & Date: N Time: 03:00 P

Seat

No.

Q.1

C)

d)

Instructions:

SLR-JS-386

Set

Ρ

- 9) Dynamic programming deals with the _
 - a) Multistage decision making problems
 - b) Single stage decision making problems
 - c) Time dependent decision making problems
 - d) Problem which fix the levels of different so as to maximize profit or minimize cost.
- 10) The pay of value for which each player in the game always selects the same strategy is called the _____.
 - a) Equilibrium point b) Saddle point
 - c) Both (a) and (b) d) Pivot point

11) Recursive approach method used in _____

- a) Dynamic programming b) Linear programming
- c) Quadratic programming d) Goal programming
- 12) The of pay-off matrix of a game can be reduced by using the principle of
 - a) Dominance b) Inversion
 - c) Transpose d) Rotation reduction

13) If the quadratic form X^TQX is positive definite, then it is_____

- a) Strictly convex b) Strictly concave
- c) Convex d) Concave

14) Quadratic programming problem concern with non linear programming problem with quadratic objective function subject to ______.

- a) Non linear inequality constraints
- b) Non linear equality constraints
- c) linear inequality constraints
- d) No constraints

Q.2 A) Answer the following questions.(Any Four)

- 1) Define general linear programming problem. Also explain the terms solution and feasible solution.
- 2) Explain a dynamic programming problem.
- 3) Describe two persons zero sum game.
- 4) Explain effect of addition of new variable on the optimality of optimum feasible solution.
- 5) Write down characteristics of dynamic programming.

B) Write Notes.(Any Two)

- 1) Two phase method
- 2) Dominance property
- 3) Non-linear programming problem

Q.3 A) Answer the following questions. (Any Two)

- 1) Find the maximum value of $Z = 50x_1 + 60x_2$, subject to constraints $2x_1 + 3x_2 < 1500, 3x_1 + 2x_2 \le 1500, 0 \le x_1 \le 400, 0 \le x_2 \le 400$
- 2) Solve the following game with payoff matrix of player A

Player B

Player A
$$\begin{pmatrix} 3 & 2 & 4 & 0 \\ 3 & 4 & 2 & 4 \\ 4 & 2 & 4 & 0 \\ 0 & 4 & 0 & 8 \end{pmatrix}$$

3) Write down Gomory's fractional cut method to solve all integer programming problem.

08

06

B) Answer the following questions. (Any One)

- 1) Write down simplex algorithm to solve linear programming problem.
- 2) Solve following LPP using dynamic programming $Maximize \ Z = 3x_1 + 7x_2$, subject to constraints $x_1 + 4x_2 < 8, 0 \le x_2 \le 2, x_1 \ge 0$

Q.4 A) Answer the following questions. (Any Two)

- 1) Explain the terms convex set and convex combinations. Also show that set of all feasible solutions is convex.
- 2) Let x_0 and w_0 be the feasible solutions of primal {*Maximize* f(x) = cx, *sub. to* $Ax \le b, x \ge 0$ } and dual {min g(w) = b'w, *sub to* $A'w \ge c', w \ge 0$ } problems respectively. Show that x_0 and w_0 are optimal solutions to the respective problems if and only if $cx_0 = b'w_0$
- 3) Write an procedure to obtain solution of quadratic programming using Wolfe's method.

B) Answer the following questions. (Any One)

- 1) Discuss procedure to obtain 2x2 games without saddle point.
- 2) State and prove complementary slackness theorem.

Q.5 Answer the following questions. (Any Two)

 Use Branch and Bound method to solve following integer programming problem

Maximize $Z = 7x_1 + 9x_2$, subject to constraints.

 $-x_1 + 3x_2 < 6, 7x_1 + x_2 \le 35, x_2 \le 7, x_1, x_2 \ge 0$ and integers

2) Use simplex method to solve following game.

Player B (4 2 4)

1 8/

Player A
$$\begin{pmatrix} 4 & 2 \\ 2 & 4 \\ 4 & 1 \end{pmatrix}$$

3) Describe effect of change in coefficients of objective function $c'_j s$ in sensitivity analysis.

06

04

14