

Exercise

(A) Choose the correct alternative for each of the following and rewrite the sentence :

Answers : 1. (a), 2. (a), 3. (d), 4. (b), 5. (b), 6. (d)

(B) Answer in one sentence (One mark for each question) :

1. Target molecule (TM)
2. Disconnection
3. Synthon
4. Synthetic equivalence
5. Functional Group Interconversion (FGI)
6. One group disconnection
7. Retrosynthesis

(C) Short Answer Type Questions : Give retrosynthesis of following molecules :

1. Cinnamaldehyde
2. Cyclohexene
3. Para methoxy acetophenone
4. Methyl-3-phenyl propionate,
5. α, α -dimethyl benzyl alcohol
6. Paracetamol.

(D) Long Answer Type Questions :

1. Explain the terms involved in retrosynthesis with examples.
2. Define various terms involved in disconnection approach and give retrosynthesis of following molecules :
 - (a) Cyclohexene, (b) Cinnamaldehyde.

1. Retrosynthesis is defined as:

- A) Analysis of chemical structure only
- B) The design of synthetic pathways by working backward from the target molecule
- C) Synthesis of molecules using available reagents
- D) A purification technique in organic chemistry

Answer: B

2. The main purpose of retrosynthetic analysis is to:

- A) Purify the target compound
- B) Determine the IR spectrum
- C) Break down a complex molecule into simpler precursor structures
- D) Predict NMR signals

Answer: C

3. In retrosynthetic terminology, the starting material is called:

- A) Target molecule
- B) Synthon
- C) Precursor
- D) Intermediate

Answer: C

4. Which of the following statements is TRUE about a synthon?

- A) It is always a real compound.
- B) It is an idealized fragment used for retrosynthetic planning.
- C) It is an intermediate formed during the synthesis.
- D) It is the final product.

Answer: B

5. A disconnection in retrosynthesis refers to:

- A) Bond formation
- B) Breaking a bond to simplify the structure
- C) Elimination reaction
- D) Oxidation of a compound

Answer: B

6. The arrow used in retrosynthesis is:

- A) \rightarrow
- B) \rightleftharpoons
- C) \Rightarrow
- D) \longrightarrow

Answer: C

7. The first step in retrosynthetic analysis is generally:

- A) Deciding the reagents
- B) Choosing the reaction conditions
- C) Identifying strategic bonds to disconnect
- D) Drawing the NMR spectrum

Answer: C

8. Which of the following is a common strategy in retrosynthesis?

- A) Functional group interconversion (FGI)
- B) UV analysis
- C) Diels-Alder reaction only
- D) Crystallization

Answer: A

9. What is meant by ‘synthetic equivalent’ in retrosynthesis?

- A) The target molecule
- B) The real reagent corresponding to a synthon
- C) The solvent used
- D) The base catalyst

Answer: B

10. Which of the following reactions is most commonly used in C-C bond-forming steps during synthesis?

- A) Friedel-Crafts reaction
- B) Grignard reaction
- C) Cannizzaro reaction
- D) Baeyer-Villiger oxidation

Answer: B

Retrosynthesis is mainly used for:

- A) Structure elucidation
- B) Spectral analysis
- C) Synthesis planning
- D) Reaction mechanism

Answer: C

2. The term retrosynthesis was popularized by:

- A) R. B. Woodward
- B) E. J. Corey
- C) Grignard
- D) Claisen

Answer: B

3. The arrow used for retrosynthetic disconnection is:

- A) \rightarrow
- B) \rightleftharpoons
- C) \Rightarrow
- D) \leftrightarrow

Answer: C

4. The key objective of retrosynthetic analysis is to:

- A) Break all bonds
- B) Identify suitable disconnections
- C) Change functional groups
- D) Purify a compound

Answer: B

5. The term "target molecule" refers to:

- A) A reactant
- B) The molecule to be synthesized

- C) A reagent
- D) A catalyst

Answer: B

6. Synthon is:

- A) Real chemical reagent
- B) A spectroscopic tool
- C) Idealized fragment generated during retrosynthesis
- D) An intermediate

Answer: C

7. Synthetic equivalent means:

- A) Actual reagent corresponding to synthon
- B) A spectroscopic parameter
- C) Final product
- D) None

Answer: A

8. The major goal of retrosynthetic disconnection is:

- A) To identify the longest carbon chain
- B) To predict the melting point
- C) To reduce a complex molecule into simple starting materials
- D) To get UV spectrum

Answer: C

9. Which is the correct retrosynthetic step for alcohol synthesis?

- A) Ketone + Grignard reagent
- B) Acid + Amine
- C) Alkene + H₂
- D) Aldehyde + Acid

Answer: A

10. Which bond is broken in a retrosynthetic step?

- A) π -bond
- B) σ -bond

- C) Any bond that simplifies the structure
- D) Hydrogen bond

Answer: C

Section B: Synthon & Disconnection

11. In retrosynthesis, synthon is:

- A) A stable compound
- B) A theoretical fragment
- C) An actual reagent
- D) A catalyst

Answer: B

12. A nucleophilic synthon carries:

- A) Positive charge
- B) Negative charge
- C) No charge
- D) Radical character

Answer: B

13. Functional Group Interconversion (FGI) is used to:

- A) Create aromaticity
- B) Change functional group into another
- C) Improve melting point
- D) Perform chromatography

Answer: B

14. Common synthon for carbonyl group is:

- A) Electrophilic carbon
- B) Nucleophilic oxygen
- C) Neutral carbon
- D) Radical oxygen

Answer: A

15. For aldehyde synthesis, retrosynthesis often involves:

- A) Alcohol oxidation
- B) Alcohol reduction
- C) Nitration
- D) Halogenation

Answer: A

16. The key to successful retrosynthesis is:

- A) Purification
- B) Strategic bond disconnection
- C) Color change
- D) Acid-base titration

Answer: B

17. Disconnection refers to:

- A) Breaking strategic bonds
- B) Making new bonds
- C) Separation of layers
- D) Solvent evaporation

Answer: A

18. Chemoselectivity in retrosynthesis refers to:

- A) Preferential formation of one enantiomer
- B) Selective transformation of a particular functional group
- C) Electrophile selection
- D) Nucleophile selection

Answer: B

19. Retrosynthesis is a:

- A) Forward approach
- B) Backward approach
- C) Neutral approach
- D) Random approach

Answer: B

20. The key idea behind retrosynthesis is to:

- A) Disconnect the most polar bond
- B) Remove the most strained bond
- C) Disconnect bonds to generate easily available precursors
- D) Avoid functional groups

Answer: C

Section C: Reaction-Based Retrosynthesis

21. Williamson synthesis is associated with:

- A) Ether formation
- B) Ester formation
- C) Amide formation
- D) Alkene formation

Answer: A

22. Aldol condensation is useful in:

- A) Alcohol synthesis
- B) Carbon-carbon bond formation
- C) Nitro compound synthesis
- D) Oxidation

Answer: B

23. Friedel–Crafts reaction is widely used in retrosynthesis of:

- A) Alkanes
- B) Alcohols
- C) Aromatic ketones
- D) Amides

Answer: C

24. Wittig reaction is used for:

- A) Alcohol formation
- B) Ketone formation
- C) Alkene formation
- D) Amine formation

Answer: C

25. Paal-Knorr synthesis is useful for preparing:

- A) Aldehydes
- B) Alcohols
- C) 5-membered heterocycles
- D) Carboxylic acids

Answer: C

26. Grignard reagent is a:

- A) Nucleophilic oxygen synthon
- B) Nucleophilic carbon synthon
- C) Electrophilic carbon synthon
- D) Free radical synthon

Answer: B

27. One of the simplest disconnections in ester synthesis is:

- A) Acid + Alcohol
- B) Aldehyde + Alcohol
- C) Alkene + Water
- D) Acid + Ether

Answer: A

28. Reduction of ketone gives:

- A) Alkene
- B) Ester
- C) Alcohol
- D) Acid

Answer: C

29. Diels-Alder reaction is commonly used for:

- A) Linear molecule synthesis
- B) Aromatic compound formation
- C) 6-membered ring synthesis
- D) Nitro compound synthesis

Answer: C

30. Which of the following is most often used for C–N bond formation?

- A) Wittig reaction
- B) Mannich reaction
- C) Aldol reaction
- D) Cannizzaro reaction

Answer: B

Section D: Advanced Concepts

31. A 1,3-dicarbonyl compound is often used in retrosynthesis for:

- A) Alkane synthesis
- B) Alkene synthesis
- C) Heterocycle synthesis
- D) Halide synthesis

Answer: C

32. Protecting groups are used in retrosynthesis to:

- A) Block functional groups temporarily
- B) Increase molecular weight
- C) Change hybridization
- D) Perform FGI

Answer: A

33. A 2-carbon electrophilic synthon is generally derived from:

- A) Ethylene oxide
- B) Acetyl chloride
- C) Ethanol
- D) Acetone

Answer: B

34. For ether synthesis, retrosynthesis suggests:

- A) Alcohol + Alcohol

- B) Alcohol + Alkyl halide
- C) Acid + Alcohol
- D) Ketone + Alcohol

Answer: B

35. A common disconnection of β -lactams involves:

- A) Amide bond
- B) Ester bond
- C) Nitrile bond
- D) Alkene bond

Answer: A

36. In retrosynthesis, “retron” means:

- A) Reactant
- B) Functional group responsible for a reaction
- C) Reaction byproduct
- D) Purified product

Answer: B

37. FGI is essential when:

- A) Target molecule lacks reactive functional groups
- B) Starting materials are expensive
- C) Spectroscopy is difficult
- D) Product is colored

Answer: A

38. Retrosynthetic disconnection of an amide often gives:

- A) Acid + Alcohol
- B) Acid chloride + Amine
- C) Ester + Amine
- D) Nitrile + Alcohol

Answer: B

39. The synthetic equivalent of nucleophilic carbon synthon is:

- A) Grignard reagent

- B) Aldehyde
- C) Carboxylic acid
- D) Nitro compound

Answer: A

40. When an alkene is needed from carbonyl compound, which reaction is suggested in retrosynthesis?

- A) Friedel-Crafts reaction
- B) Wittig reaction
- C) Aldol condensation
- D) Cannizzaro reaction

Answer: B

Section E: Mixed Questions

41. A common synthon for carboxylic acid is:

- A) Carbocation
- B) Nucleophilic hydroxide
- C) Acyl anion equivalent
- D) Nucleophilic nitrogen

Answer: C

42. Which reaction involves diene and dienophile?

- A) Mannich reaction
- B) Wittig reaction
- C) Diels-Alder reaction
- D) Claisen condensation

Answer: C

43. The ultimate goal of retrosynthesis is to identify:

- A) Analytical method
- B) Synthesis cost
- C) Pathways to synthesize target molecule
- D) Color of compound

Answer: C

44. A key advantage of retrosynthesis is:

- A) Predicting melting point
- B) Simplifying synthesis to available precursors
- C) Avoiding all side reactions
- D) Increasing reaction rate

Answer: B

45. In retrosynthesis, heterocycles are often formed by:

- A) Perkin reaction
- B) Paal-Knorr synthesis
- C) Wittig reaction
- D) Cannizzaro reaction

Answer: B

46. Protecting groups should be:

- A) Easily removable
- B) Non-removable
- C) Stable forever
- D) Non-selective

Answer: A

47. Aromatic ketones are often synthesized by:

- A) Grignard reaction
- B) Friedel-Crafts acylation
- C) Perkin reaction
- D) Wittig reaction

Answer: B

48. For the synthesis of quinoline derivatives, retrosynthesis often involves:

- A) Skraup synthesis
- B) Paal-Knorr synthesis
- C) Mannich reaction
- D) Wittig reaction

Answer: A

49. A typical C=O disconnection gives:

- A) Two acids
- B) Nucleophile and electrophile synthons
- C) Two alcohols
- D) Carbanion only

Answer: B

50. The overall advantage of retrosynthesis is to:

- A) Find unknown compounds
- B) Generate spectral data
- C) Plan an efficient, economical synthesis
- D) Avoid organic synthesis

Answer: C