SLR-MM - 522 5 | Seat | | |------|--| | No. | | # M.Sc. (Part – II) (Semester – III) Examination, 2015 STATISTICS (Paper – XII) Multivariate Analysis (New) (CGPA) Day and Date: Wednesday, 18-11-2015 Max. Marks: 70 Time: 2.30 p.m. to 5.00 p.m. Instructions: 1) Attempt five questions. - 2) Q.No. (1) and Q.No. (2) are compulsory. - 3) Attempt any three from Q.No. (3) to Q.No. (7). - 4) Figures to the right indicate full marks. - 1. A) Choose the correct alternative: 1) Let X be a p×1 random vector such that $X \sim N_p(\mu, \Sigma)$, where rank $(\Sigma) = p$. Which of the following is true ? a) $$E[(X - \mu)' \Sigma^{-1}(X - \mu)] = 2p, V[(X - \mu)' \Sigma^{-1}(X - \mu)] = 2p$$ b) $$E[(X - \mu)' \Sigma^{-1}(X - \mu)] = 2p, V[(X - \mu)' \Sigma^{-1}(X - \mu)] = p$$ c) $$\mathsf{E}\!\left[(X-\mu)'\,\Sigma^{-1}(X-\mu)\right] = p,\; V\!\left[(X-\mu)'\,\Sigma^{-1}(X-\mu)\right] = p$$ d) $$E[(X - \mu)' \Sigma^{-1}(X - \mu)] = p, V[(X - \mu)' \Sigma^{-1}(X - \mu)] = 2p$$ 2) Let $X_1, X_2, ..., X_n$ be a random sample of size n from p-variate normal distribution with mean vector μ and covariance matrix Σ . The distribution of mean vector $\overline{\chi}$ is a) $$N_p(\mu, \Sigma)$$ b) $N_p(\mu, \frac{1}{n}\Sigma)$ c) $N_p(\mu, \frac{1}{n-1}\Sigma)$ d) $N_p(\frac{1}{n}\mu, \frac{1}{n}\Sigma)$ 5 - 3) Let $A \sim W_p$ (m, Σ) and $a \in R^p$ with $a' \Sigma a \neq 0$. Then distribution of $\frac{a' A a}{a' \Sigma a}$ is - a) χ^2_p b) χ^2_m c) χ^2_{m-p} d) χ^2_{m-n+1} - 4) Canonical correlation is a measure of association between - a) one variable and set of other variables - b) two sets of variables - c) two types of variables - d) none of these - 5) Let $X_1, X_2, ..., X_n$ be a random sample of size n from p-variate normal distribution with mean vector 0 and covariance matrix Σ . The MLE of Σ is - a) $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})'$ b) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})(X_i \overline{X})'$ - c) $\frac{1}{n}\sum_{i=1}^{n}X_{i}X_{i}'$ d) $\sum_{i=1}^{n} X_i X_i'$ - B) Fill in the blanks: - 1) The first pair of canonical variables have _____ correlation. - 2) If X has $N_p(\mu, \Sigma)$ distribution and $Z = \sum_{i=1}^{n-1} (X \mu_i)$ then E (Z) = _____ - 3) Let A has $\mathbf{W}_{\mathbf{p}}$ (n, $\Sigma)$ distribution and C is some nonsingular matrix then distribution of CA C' is - 4) Hotelling's T² is multivariate extension of _____ - 5) Generalized variance is _____ of covariance matrix. C) State whether the following statements are **True** or **false**: - 4 - 1) In factor analysis, original variables are expressed as linear combinations of the factors. - 2) Canonical correlation can be negative. - 3) If X has $N_p(\mu, \Sigma)$ distribution then all marginal distributions for any subset of X are normally distributed. - 4) Wishart matrix is not symmetric. - 2. a) Answer the following. 6 - i) Define Hotelling's T² and Mahalanobis D² statistics. - ii) Obtain the null distribution of Hotelling's T² statistic. - b) Write short notes on the following: 8 - i) Rao's U statistic. - ii) Single linkage clustering method. - 3. a) Let vector X be distributed according to $N_p(\mu, \Sigma)$, show that the marginal distribution of any set of components of X is multivariate normal with means, variances and covariances obtained by taking proper components of μ and Σ respectively. - b) Let $X \sim N_p(\mu, \Sigma)$. Obtain characteristic function of X. (8+6) - 4. a) State and prove additive property of Wishart distribution. - b) Define canonical correlations and variates. Show that canonical correlation is a generalization of multiple correlation coefficient. (6+8) ### **SLR-MM - 522** - 5. a) Define principal components. State and prove any two properties of principal components. - b) Obtain the two principal components and percentage of variation explained by these components if $\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$. (7+7) - 6. a) Develop a test for equality of mean vectors of two multivariate normal populations. State your assumptions clearly. b) Let $$X \sim N_3(\mu, \Sigma)$$. Obtain the distribution of $Y = X_1 - X_2 + X_3$. (8+6) - 7. a) Explain discriminant function. Derive Fisher's best linear discriminant function. - b) Describe orthogonal factor model with m common factors. (8+6) | Seat | | |------|--| | No. | | # M.Sc. (Part – II) (Semester – III) Examination, 2016 STATISTICS (Paper – XII) (Old CGPA) Multivariate Analysis | Day and Date : Thursday, 31-3-2016 | Total Marks: 70 | |------------------------------------|-----------------| | Bay and Bato: maroday, or o 2010 | rotarmanto: 70 | Time: 2.30 p.m. to 5.00 p.m. Instructions: 1) Attempt five questions. - 2) Q. No. (1) and Q. No. (2) are compulsory. - 3) Attempt any three from Q. No. (3) to Q. No. (7). - 4) Figures to the right indicate full marks. - 1. A) Choose the correct alternative: - i) Let $\overline{\underline{X}}$ be the sample mean based on a random sample of size n from $N_p(\underline{\mu},I)$. What is the distribution of $n(\overline{\underline{X}}-\mu)'(\overline{\underline{X}}-\mu)$? a) $$N_p(\underline{\mu}, I)$$ b) $$\chi_p^2$$ c) $$\chi_n^2$$ d) $$N_p(\mu, I/n)$$ - ii) The sufficient statistic for $\underline{\mu}$ in $N_p(\underline{\mu},I)$ based on a random sample X of size n is - a) X b) XE_{n!} c) Both a) and b) - d) Neither a) nor b) - iii) The sampling distribution of a p-variate mean vector while sampling from N_p($\underline{\mu}, \Sigma)$ is - a) $N_p(\underline{\mu}, \Sigma)$ b) χ_p^2 c) $N_p(\mu, \Sigma/n)$ d) $N_p(\underline{\mu}/n, \Sigma)$ | SLR-MB- | - 629 -2- | | | | | | |---------|--|--|--------|--|--|--| | iv) | There is no gain if PCA is performed | on variance-covariance matrix | (| | | | | | Σ when | | | | | | | | a) \sum is identity matrix | b) \sum is a diagonal matrix | | | | | | | c) Both a) and b) | d) Neither a) nor b) | | | | | | v) | Which of the following is not a dimens | sion reduction technique? | | | | | | | a) PCA | b) Factor analysis | | | | | | | c) Cluster analysis | d) Discriminant analysis | | | | | | B) Fill | in the blanks : | | | | | | | i) | Characteristic function of $N_p (\underline{0}, I)$ is | | | | | | | ii) | is used to pictorial | ly represent the process of clust | ering. | | | | | iii) | is used to pictorially | represent the variance explain | ed by | | | | | | principal components. | | | | | | | iv) | Canonical correlation is generalizatio | n ofcorrela | tion. | | | | | v) | is a non-hierarch | nical clustering method. | | | | | | C) Sta | ate whether true or false : | | | | | | | i) | Hotelling's T^2 = Mahalanobis D^2 . | | | | | | | ii) | Large Mahalanobis distance between of misclassification. | n two populations implies small | error | | | | | iii) | If $(X_1, X_2)'$ has dispersion matrix | $\begin{pmatrix} 4 & 0 \\ 0 & 5 \end{pmatrix} \text{ then } X_1 \text{ and } X_2 \text{ mu}$ | st be | | | | | | independent. | | | | | | iv) Chi-square distribution is a particular case of Wishart distribution. ii) Give two equivalent definitions of p-variate non-singular normal 2. a) i) State and prove additive property of Wishart distribution. distribution. b) Write short notes on the following: i) Single linkage clustering. ii) Generalized variance. (5+5+4) (3+3) (4+4) - 3. a) Let \underline{X} be distributed as $N_3(\underline{0}, \Sigma)$ where $\Sigma = \begin{pmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, which of the following random variables are independent? Explain. - i) $(X_1, X_3)'$ and X_2 - ii) X_1 and $X_1 + 3X_2 2X_3$ - iii) $X_1 + X_2$ and $X_1 X_2$ - iv) $X_1 + X_3$ and $X_1 X_3$. - b) Show that $\overline{\underline{\chi}}$ and S are independently distributed when sampling from $N_p \ \big(\mu, \, \Sigma \big). \eqno(7+7)$ - 4. a) Derive Wishart distribution in canonical case. - b) Derive characteristic function of $W_p(f, \Sigma)$. (7+7) - 5. a) Derive ECM rule for two class classification. - b) Derive Hotelling's T² statistic through Roy's union intersection principle. (7+7) - 6. a) Derive principal components and interpret them. - b) Discuss the use of Hotelling's T² in the problem of symmetry. (7+7) - a) Derive a test for testing the need for additional variable for discrimination purpose. - b) Explain canonical correlation and canonical variates. State and prove their properties. (7+7) | Seat | Sat | D | |------|-----|---| | No. | Set | | # M.Sc. (Semester - III) (CBCS) Examination March/April-2019 Statistics | | MULTIVARIATE A | | |---------|--|---| | • | Date: Monday, 29-04-2019
3:30 PM To 06:00 PM | Max. Marks: 70 | | Instruc | tions: 1) All questions are compulsory. 2) Figures to the right indicate full m | narks. | | | hoose the most correct alternative. All of the following techniques are useful | for dimension reduction except | | | a) clustering c) discriminant analysis | b) factor analysisd) principal components analysis | | 2) | The mean vector of a random vector (X₁ of (X₁+X₂,X₁-X₂) is a) (10,0) b) (20,20) | b) (10,10) | | 3) | c) (20,20) Principal components are a) orthogonal c) independent | d) (10,-10)b) uncorrelatedd) all of these | | 4) | A principal component analysis was run obtained: 4.731, 2.218, 0.442. How man that 50% of the variation present in the oa) 1 c) 3 | y components would you retain so | | 5) | Generalised variance is of covara) tracec) trace+ determinant | iance matrix. b) determinant d) none of these | | 6) | Wishart distribution is a multivariate general Normal c) chi-square | eralization of b) t d) F | | 7) | Statistical techniques that focus upon bri relation among three or more variables a a) bivariate c) multivariate | _ | | 8) | A canonical correlation cannot be negative. a) we take only positive eigen values b) it is generalisation of multiple correlation. c) we take only positive square rooted. d) we rejected negative value | | | 9) | Let $A \sim W_p(\mu, \Sigma)$ and \underline{a} be a (p x 1) vector
Then is distributed $\frac{a'Aa}{a'\Sigma a}$ is distributed as _a) χ^2_n
c) χ^2_{n-p} | | | | 10)E | Based on a random sample of size n fro | m $N_p(\mu, \Sigma)$, the distribution of X is | _• | |-----|---|--|---|----| | | ; | a) $N_p(\mu, \Sigma)$ | b) $N_p\left(\mu,\frac{1}{n}\Sigma\right)$ | | | | (| c) $N_p\left(\mu, \frac{1}{n-1}\Sigma\right)$ | d) None of these | | | | | Let $X \sim N_p(\mu, \Sigma)$ then Σ is matrix. | | | | | | a) a positive definite
c) symmetric | b) squared) all of these | | | | | The first principal component is having _ | , | | | | - | n) largest | b) least | | | | C | e) average | d) none of these | | | | - | Let \underline{X} is multivariate normal, then $\underline{a}'\underline{X}$ is | | | | | | n) <u>a</u> is unit vector
r) for all a | b) <u>a</u> is zero vectord) none of these | | | | | , <u> </u> | , | | | | | Let $X{\sim}N_p(\mu,\Sigma)$ then variance of AX isa) $A \Sigma A^{'}$ | ·
b) A΄Σ A | | | | | c) AA Σ | d) None of these | | | Q.2 | A) | Answer the following (Any Four) Define Mahalanobis distance. Define multivariate normal distribut Define multiple correlation coefficient State moment generating function Define Wishart distribution. | ent. | 80 | | | B) | Writes notes on following. (Any Two1) Principal components analysis.2) Average linkage method of clusteri3) Additive property of Wishart distrib | ng. | 06 | | Q.3 | A) Answer the following. (Any Two) 1) Let vector $X = (X_1, X_2)$ ' be distributed according to $N_p(\mu, \Sigma)$. Then find | | | | | | | marginal distribution of X ₁ . 2) Show that two p-variate normal vector(X ₁ , X ₂) = 0 | ctors X ₁ and X ₂ are independent iff | | | | | 3) If vector X is distributed according then find distribution of AX. | to $N_p(\mu, \Sigma)$ and A is a p x k matrix, | | | | B) | Answer the following. (Any One) 1) Define generalized variance. Deriv generalized variance when samplir 2) Explain what is meant by singular and the sample of o | ng from $N_p(\mu, \Sigma)$. | 06 | | Q.4 | A) | Answer the following: (Any Two) | _ | 10 | | | ŕ | Derive characteristic function of Wi Based on following variance-covar
components and percentage of var
components | ance matrix, obtain two principal | | | | | $\Sigma = \begin{bmatrix} 3 & 1 \\ 1 & A \end{bmatrix}$ | | | | | | 3) Describe canonical variable and caprove any two properties of canoni | | | ## **SLR-ES-378** #### B) Answer the following. (Any One) 04 - 1) Let vector X be distributed according to $N_p(\mu, \Sigma)$. Then obtain moment generating function of X. - 2) Describe Roy's Union-Intersection principle. Show that Roy's Union-Intersection principle leads to Hotelling's T² statistic. #### Q.5 Answer the following. (Any Two) 14 - a) In usual notations, for $N_p(\mu, \Sigma)$, show that X and S are maximum likely estimators of μ and Σ respectively. - **b)** Obtain the rule of discrimination for two normal populations Π_1 and Π_2 - c) Explain method of clustering. What is meant by agglomerative clustering and divisive clustering? Also explain single linkage and complete linkage. | Seat | Set | D | |------|-----|---| | No. | Set | | # M.Sc. (Semester - III) (CBCS) Examination Oct/Nov-2019 | | | | Statis | tics | | | |-------|---------------|-------------------|---|----------------------------|--|-------| | | | | MULTIVARIAT | E AN | ALYSIS | | | • | | | esday, 05-11-2019
To 05:30 PM | | Max. Marks | 3: 70 | | Instr | uction | |) All questions are compulsory.) Figures to the right indicate ful | l mark | S. | | | Q.1 | Fill ir
1) | | e blanks by choosing correct and are alised variance is of contrace trace trace+ determinant | | nce matrix. | 14 | | | 2) | The of (X a) | | or (X ₁)
b) | (13, 5)
(13, 1) | | | | 3) | Prin
a)
c) | cipal components are orthogonal independent | b)
d) | uncorrelated | | | | 4) | | ays
square matrix | | the variance-covariance matrix is non-negative definite all of these | | | | 5) | distı
a) | \sim N_p $(\underline{\mu}, \Sigma)$, then for a vector \underline{a} , the ribution? N_p $(\underline{\mu}, \Sigma)$ N_p $(\underline{\mu} - \frac{1}{n} \Sigma)$ | b) | table \underline{a} '. \underline{X} follows which $N_p(\underline{\mu}, n\underline{\Sigma})$ none of these | | | | 6) | dist | distribution is a multivari
ribution.
Multivariate Normal
Wishart distribution | b) | | | | | 7) | sim | istical techniques that focus upoultaneous relation among three lysis. bivariate multivariate | | | | | | 8) | a)
b)
c) | , . | ues
correla | | | | | 9) | In fa
a)
c) | actor analysis, if there are k variate $k < m$ $m = k$ | ables
b)
d) | and m factors, then $m < k$ none of these | | | | 10) | is
a) | $N_{m}(\mu,\Sigma)$ | | $N_p(\mu,\Sigma),$ the distribution of X $N_p(\mu, rac{1}{n}\Sigma)$ | | |-----|-----------|------------------------------------|---|---------------|---|----| | | | c) | $N_p(\mu, \frac{1}{n-1} \Sigma)$ | d) | none of these | | | | 11) | While clust two a) | le applying clustering algor
ters is taken to be the smallest dis
clusters. | stan
b) | | | | | 12) | Amo
large
a) | ong the principal components, the est variance. | b) | | | | | 13) | a) | $ rac{X}{a}$ is multivariate normal, then \underline{a} ' $ rac{X}{a}$ is unit vector for all \underline{a} | b) | nivariate normal, only if \underline{a} is zero vector none of these | | | | 14) | | $X{\sim}N_p\left(\mu,\Sigma ight)$ then variance of AX is $A\ \Sigma\ A'$ | b) | $A' \Sigma A$ none of these | | | Q.2 | A) | Answ
1)
2)
3)
4)
5) | ver the following questions. (An Define multivariate normal distributed State Wishart density function. Define multiple correlation coefficience Hotelling-T ² statistics. Define variance covariance matr | outic
cien | on. | 08 | | | B) | Write 1) 2) 3) | e notes. (Any Two) Mahalanobis distance Generalised variance Characteristic function of Wishar | t dis | stribution | 06 | | Q.3 | A) | Answ
1)
2)
3) | ver the following questions. (As Let vector $X = (X_1, X_2,, X_p)$) be Then find marginal distribution of Show that two p-variate normal $Cov(X1, X2) = 0$ If vector X is distributed according then find distribution of AX . | dis X_1 . | tributed according to $N_p(\mu, \Sigma)$. ors X_1 and X_2 are independent iff | 08 | | | B) | Ansv
1)
2) | ver the following questions. (An
Write short notes on singular and
Explain the technique of principle | on b | n-singular normal distribution. | 06 | | Q.4 | A) | Answ
1)
2)
3) | ver the following questions. (An State and prove additive propert How one can find correlation bet vectors? Explain in brief. Explain in brief the idea of factor | y of
wee | Wishart distribution.
en two multivariate normal random | 10 | ## **SLR-JS-379** ### B) Answer the following questions. (Any One) 04 - 1) Derive the moment generating function of $N_p(\mu, \Sigma)$ distribution. - 2) Let $A \sim W_p(\mu, \Sigma)$ and \underline{a} be a (p x 1) vector which is independently distributed. Then obtain the distribution of $\frac{a'Aa}{a'\Sigma a}$ #### Q.5 Answer the following questions. (Any Two) 14 - 1) Explain method of clustering. What is meant by agglomerative clustering and divisive clustering? Also explain single linkage and complete linkage. - 2) Discuss the problem of discrimination for multivariate observation. Also explain costs associated with it. - 3) In usual notations, for $N_p(\underline{\mu}, \Sigma)$, show that X and S are maximum likely estimators of $\underline{\mu}$ and Σ respectively.