SLR-MM – 512

Seat	
NO.	

M.Sc. (Part – I) (Semester – II) Examination, 2015 STATISTICS (Paper – VII) Linear Models (New) (CGPA)

Day and Date : Thursday, 19-11-2015 Time : 10.30 a.m. to 1.00 p.m.

Max. Marks : 70

Instructions : 1) Attempt *five* questions.

- 2) Q. No. (1) and Q. No. (2) are compulsory.
- 3) Attempt any three from Q. No. (3) to Q. no. (7).
- 4) Figures to the **right** indicate **full** marks.
- 1. A) Select the correct alternative :

1) In general linear model, $y = X\beta + \epsilon$

- a) rank[X'X, X'y] = rank[X'X] b) rank $[X'X, X'y] \le$ = rank[X'X]
- c) rank $[X'X, X'y] \ge$ rank[X'X] d) rank[X'X, X'y] < rank[X'X]

2) In one-way ANOVA model $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$; i = 1, 2, ...,k; $j = 1, 2, ..., n_i$, the dimension of estimation space is

a) k-1 b) n_i c) $n_i - 1$ d) k

3) In two-way ANOVA model $y_{ij} = \mu + \alpha_i + \beta_i + \varepsilon_{ij}$; i = 1, 2, ...p; j = 1, 2, ...q the test

statistic for testing the equality of $\beta'_j s$ has F distribution withd.f.

- a) (p-1), (p-1) (q-1) b) (q-1), (p-1) (q-1)
- c) (p-1), pq-p-q+2d) (p-1), pq-p-q-2
- 4) A balanced design is _____ connected.
 - a) sometimes b) always c) never d) generally
- 5) For a BIBD with usual notation, $\lambda(v-1) =$
 - a) k(r-1) b) k(r+1) c) r(k+1) d) r(k-1)

(1×5)

SLR-MM – 512

- B) Fill in the blanks :
 - 1) In general linear model $y = X\beta + \epsilon$, the quantity XS^-X' is ______ under the choice of g-inverse of S = X'X.

-2-

- 2) In general linear model, $y = X\beta + \varepsilon$, $V(\lambda'\beta) =$ _____
- 3) A connected block design can not be _____
- 4) A block design is _____ if and only if $CR^{-\delta}N = 0$.
- The degrees of freedom of error SS in two-way without interaction ANOCOVA model with p rows, q columns, 1 observation per cell, and m covariate is _____ (1×5)
- C) State true or false.
 - 1) The degree of freedom of error SS in two-way ANOVA with interaction model with p rows and q columns and with one observation per cell is one.
 - 2) In general linear model, any linear function of the LHS of normal equations is the BLUE of its expected value.
 - 3) BIBD is not orthogonal.
 - 4) A connected design is always balanced. (1×4)
- 2. a) i) Show that any solution of normal equations minimizes the residual sum of squares.
 - ii) Examine whether the following block design is connected.

$$B_1 = \begin{bmatrix} 1\\2\\4 \end{bmatrix}, B_2 = \begin{bmatrix} 1\\3\\5 \end{bmatrix}, \text{ and } B_3 = \begin{bmatrix} 2\\4\\3 \end{bmatrix}.$$
 (3+3)

- b) Write short notes on the following :
 - i) Tuckey's test of non-additivity
 - ii) Dual of a BIBD. (4+4)

- a) Prove that in general model y = Xβ+∈, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations, and conversely, any linear function of the LHS of normal equations is the BLUE of its expected value.
 - b) Prove that in general linear model y = Xβ+ ∈, a necessary and sufficient condition for the estimability of a linear parametric function λ'β is that λ' = λ'H, where H = S⁻S, S = X'X.
- 4. a) Derive the test for testing the hypothesis of the equality of treatment effects in one-way ANOVA model.
 - b) Describe two-way ANOVA without interaction model with one observation per cell and obtain the least square estimates of its parameters. (7+7)
- 5. a) Describe Tuckey's and Scheff's procedures of multiple comparisons.
 - b) Describe ANOCOVA model is general and obtain the least square estimates of its parameters. (7+7)
- 6. a) Derive a test for testing a general linear hypothesis in a general linear model.
 - b) prove that RBD is connected, orthogonal and balanced. (7+7)
- 7. a) State and prove a necessary and sufficient condition for orthogonality of a connected block design.
 - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7)

-3-

SLR-MB – 614

Total Marks: 70

Seat	
No.	

M.Sc. (Part – I) (Semester – II) Examination, 2016 STATISTICS (Paper – VII) Linear Models (New CBCS)

Day and Date : Friday, 1-4-2016 Time : 10.30 a.m. to 1.00 p.m.

Instructions : 1) Attempt five questions.

- 2) Q. No. (1) and Q. No. (2) are compulsory.
- 3) Attempt any three from Q. No. (3) to Q. No. (7).
- 4) Figures to the **right** indicate **full** marks.
- 1. A) Select the correct alternative :
 - 1) In general linear model, $y = X\beta + \varepsilon$, _____
 - a) y is known and x is unknown
 - b) y and X both are unknown
 - c) y is known and β is unknown
 - d) X is unknown and β is known
 - 2) The degrees of freedom of SSE in one-way ANOVA model with N observations and k levels of treatments are _____
 - a) N-k-1 b) k-1
 - c) k d) N-k
 - 3) In a connected block design with v treatments and b blocks, rank of C matrix is _____
 - a) v b) b c) b 1 d) v 1
 - 4) For a BIBD with usual notation, $\lambda(v-1) =$
 - a) k(r 1) b) k(r + 1)
 - c) r(k + 1) d) r(k 1)
 - 5) A balanced design is _____ connected.
 - a) Sometimesb) Alwaysc) Neverd) Generally

(1×5) P.T.O.

SLR-MB-614

-2-

- B) Fill in the blanks :
 - 1) In general linear model $y = X\beta + \epsilon$, a particular solution of the normal equations is _____
 - 2) The dimension of the estimation space in two-way ANOVA without interaction model with p rows and q columns and with one observation per cell is _____
 - 3) The physical variables other than the response variable involved in ANOCOVA model are called ______
 - 4) A connected block design can not be _____
 - 5) In a BIBD, the number of blocks is ______ the number of treatment. (1×5)
- C) State true or false :
 - 1) In general linear model, if S⁻ is a g-inverse of S = X'X, its transpose is also g-inverse of S.
 - 2) In general linear model, any linear function of the LHS of normal equations is the BLUE of its expected value.
 - 3) BIBD is not orthogonal.
 - 4) A balanced design is always connected. (1×4)
- 2. a) i) Explain the three types of error levels in multiple comparison procedures.
 - ii) Show that for a connected block design, the vector of adjusted treatment totals Q is given by $Q = T \frac{G}{n}r$, where T is the vector of treatment totals, r is the vector of replication numbers of the treatments, G is the grand total of the observations and n is the total number of observations. (3+3)
 - b) Write short notes on the following :
 - i) Estimation space
 - ii) Tuckey's test of non-additivity.

(4+4)

- a) Prove that in general linear model y = Xβ+∈, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations, and conversely, any linear function of the LHS of normal equations is the BLUE of its expected value.
 - b) Define error space for general linear model y = Xβ+∈. Prove that a linear function of observations a'y belongs to the error space if and only if the coefficient vector a is orthogonal to the columns of X. (7+7)
- 4. a) Derive the test for testing the hypothesis of the equality of treatment effects in one-way ANOVA model.
 - b) Describe two-way ANOVA without interaction and with one observation per cell model and obtain the least square estimates of its parameters. (7+7)
- 5. a) Describe Tuckey's and Bonferroni's procedures of multiple comparisons.
 - b) Describe ANOCOVA model in general and obtain the least square estimates of its parameters. (7+7)
- 6. a) State and prove a necessary and sufficient condition for orthogonality of a general block design.
 - b) Define BIBD and show that it is balanced. (7+7)
- a) Describe two-way with interaction ANOVA model with r > 1 observations per cell and obtain the least square estimates of its parameters.
 - b) Prove that in general linear model y = Xβ+∈, a necessary and sufficient condition for the estimability of a linear parametric function λ'β is that λ' is a linear combination of the rows of X.

-3-

SLR-BP – 478

Total Marks: 70

Seat	
No.	

M.Sc. (Part – I) (Semester – II) Examination, 2015 **STATISTICS** (Paper – VII) Linear Models (New)

Day and Date : Saturday, 18-4-2015 Time : 11.00 a.m. to 2.00 p.m.

Instructions: 1) Attempt five questions.

- 2) Q. No. (1) and Q. No. (2) are compulsory.
- 3) Attempt any three from Q. No. (3) to Q. No. (7).
- 4) Figures to the **right** indicate **full** marks.

1. A) Select the correct alternative :

- 1) In general linear model, $y = X\beta + \varepsilon$, _____
 - a) y is known and X is unknown b) y and X both are unknown
 - c) y is known and β is unknown d) X is unknown and β is known

2) In two-way ANOVA model $y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$; i = 1, 2, ..., p; j = 1, 2, ..., q, ____ is estimable.

a) $\mu + \alpha_1$ b) $\alpha_1 - \alpha_2$ c) $\alpha_1 + \alpha_2$ d) $\alpha_1 + \beta_2$

- 3) In a connected block design with v treatments and b blocks, rank of D matrix is _____
 - _____ c) b 1 b) b d) v – 1 a) v
- a) rv b) r(v 1) c) r(k 1) d) $\lambda(v 1)$ 5) A connected design is _____ balanced. a) sometimes b) always c) never Fill in the block.
- b) always c) never d) generally (1×5)

B) Fill in the blanks :

- 1) In general linear model $y = X\beta + \epsilon$, a particular solution of the normal equations is
- 2) The rank of the estimation space in two-way ANOVA with interaction model with p rows and g columns and with one observation per cell is
- 3) The BLUE of a treatment contrast $\sum_{i} c_i \alpha_i$ in a two-way ANOVA model is
- 4) The physical variables other than the response variable involved in ANOCOVA model are called
- 5) A connected block design is orthogonal if and only if _____ (1×5)

- C) State true or false :
 - 1) In general linear model, not every solution of normal equations minimizes residual sum of squares.
 - 2) In two-way ANOVA model with interaction and one observation per cell the degrees of freedom of SSE is 1.
 - 3) In general linear model, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations.
 - 4) In a connected block design, all elementary treatment contrasts are estimable.
- 2. a) i) Show that in general linear model, the normal equations are consistent.
 - ii) Define complete block design, connected block design and orthogonal block design. (3+3)
 - b) Write short notes on the following :
 - i) Estimation space.
 - ii) C matrix in a general block design.
- 3. a) State and prove Gauss-Morkoff theorem.
 - b) Define error space for general linear model y = Xβ + ∈. Prove that a linear function of observations a'y belongs to the error space if and only if the coefficient vector a is orthogonal to the columns of X. (7+7)
- 4. a) Describe error rates in multiple comparisons.
 - b) Derive a test for testing a general linear hypothesis in a general linear model.
- 5. a) Obtain the rank of the estimation space and a complete set of linearly independent estimable linear parametric function in one-way ANOVA model and show that only contrasts of treatment effects are estimable.
 - b) Derive the test for testing the hypothesis of the equality of column effects in two-way ANOVA without interaction model with one observation per cell. (7+7)
- 6. a) Describe ANOCOVA model in general and obtain an expression for error SS.
 - b) Describe two-way ANOCOVA model and obtain the least square estimates of its parameters. (7+7)
- 7. a) State and prove a necessary and sufficient condition for orthogonality of a general block design.
 - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7)

SLR-BP – 478

(4+4)

(7+7)

 (1×4)

SLR-BP – 478

Total Marks: 70

Seat	
No.	

M.Sc. (Part – I) (Semester – II) Examination, 2015 **STATISTICS** (Paper – VII) Linear Models (New)

Day and Date : Saturday, 18-4-2015 Time : 11.00 a.m. to 2.00 p.m.

Instructions: 1) Attempt five questions.

- 2) Q. No. (1) and Q. No. (2) are compulsory.
- 3) Attempt any three from Q. No. (3) to Q. No. (7).
- 4) Figures to the **right** indicate **full** marks.

1. A) Select the correct alternative :

- 1) In general linear model, $y = X\beta + \varepsilon$, _____
 - a) y is known and X is unknown b) y and X both are unknown
 - c) y is known and β is unknown d) X is unknown and β is known

2) In two-way ANOVA model $y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$; i = 1, 2, ..., p; j = 1, 2, ..., q, ____ is estimable.

a) $\mu + \alpha_1$ b) $\alpha_1 - \alpha_2$ c) $\alpha_1 + \alpha_2$ d) $\alpha_1 + \beta_2$

- 3) In a connected block design with v treatments and b blocks, rank of D matrix is _____
 - _____ c) b 1 b) b d) v – 1 a) v
- a) rv b) r(v 1) c) r(k 1) d) $\lambda(v 1)$ 5) A connected design is _____ balanced. a) sometimes b) always c) never Fill in the block.
- b) always c) never d) generally (1×5)

B) Fill in the blanks :

- 1) In general linear model $y = X\beta + \epsilon$, a particular solution of the normal equations is
- 2) The rank of the estimation space in two-way ANOVA with interaction model with p rows and g columns and with one observation per cell is
- 3) The BLUE of a treatment contrast $\sum_{i} c_i \alpha_i$ in a two-way ANOVA model is
- 4) The physical variables other than the response variable involved in ANOCOVA model are called
- 5) A connected block design is orthogonal if and only if _____ (1×5)

- C) State true or false :
 - 1) In general linear model, not every solution of normal equations minimizes residual sum of squares.
 - 2) In two-way ANOVA model with interaction and one observation per cell the degrees of freedom of SSE is 1.
 - 3) In general linear model, the BLUE of every estimable linear parametric function is a linear function of the LHS of normal equations.
 - 4) In a connected block design, all elementary treatment contrasts are estimable.
- 2. a) i) Show that in general linear model, the normal equations are consistent.
 - ii) Define complete block design, connected block design and orthogonal block design. (3+3)
 - b) Write short notes on the following :
 - i) Estimation space.
 - ii) C matrix in a general block design.
- 3. a) State and prove Gauss-Morkoff theorem.
 - b) Define error space for general linear model y = Xβ + ∈. Prove that a linear function of observations a'y belongs to the error space if and only if the coefficient vector a is orthogonal to the columns of X. (7+7)
- 4. a) Describe error rates in multiple comparisons.
 - b) Derive a test for testing a general linear hypothesis in a general linear model.
- 5. a) Obtain the rank of the estimation space and a complete set of linearly independent estimable linear parametric function in one-way ANOVA model and show that only contrasts of treatment effects are estimable.
 - b) Derive the test for testing the hypothesis of the equality of column effects in two-way ANOVA without interaction model with one observation per cell. (7+7)
- 6. a) Describe ANOCOVA model in general and obtain an expression for error SS.
 - b) Describe two-way ANOCOVA model and obtain the least square estimates of its parameters. (7+7)
- 7. a) State and prove a necessary and sufficient condition for orthogonality of a general block design.
 - b) Prove that in a BIBD, the number of blocks is greater than or equal to the number of treatments. (7+7)

SLR-BP – 478

(4+4)

(7+7)

 (1×4)